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1. Introduction 

Genomic experiments, such as RNA-Seq, proteomics, and microarrays, often produce 
lists of genes, ranging in size from tens to thousands. While these lists are typically 
ranked based on certain measurements and genes are selected accordingly for validation 
and further functional studies, interpreting these lists is a challenging bioinformatics task. 
A number of questions have been raised so far, mainly focusing on the associations of 
these genes. Enrichment analysis, which uses gene annotation resources to determine if 
the gene list is overrepresented in any of the functional themes (pathways, functions, etc.) 
is particularly useful. Many insights were obtained using this approach. Corresponding 
tools and algorithms were developed to address different aspects of genomic studies 
(Beissbarth and Speed 2004; Subramanian, Tamayo et al. 2005; Zhang, Kirov et al. 2005; 
Zheng, Sheng et al. 2008). The commonly used knowledge bases include Gene Ontology 
(Ashburner, Ball et al. 2000), KEGG (Kanehisa, Goto et al.) and others like.  

The high throughput biological molecular networks contain association information for 
thousands of genes in the form of direct and indirect interactions, thus providing 



promising alternative to answer these questions. In these networks, nodes typically 
represent genes, while edges represent their interactions. In a variety of molecular 
networks, such as protein-protein interaction networks, genetic interaction networks, 
regulatory networks, interactions often hint at close functional associations between 
genes. Previous reports have revealed many novel insights into these networks (Barabasi 
and Albert 1999; Spirin and Mirny 2003). Recently many studies have utilized them to 
examine biological patterns, discover biomarkers etc (Sun, Jia et al.; Jia, Ewers J et al. 
2011).The advantage of using network approaches is obvious. Rather than returning 
pathways or function categories by the enrichment analysis based tools, network 
approaches return subnetworks. Subnetworks are able to show gene interactions, 
community structures, and other information in a systematic framework. Hub nodes or 
bottleneck nodes, which may not be seen in the original gene list, can be prioritized in the 
network as key connecting components in the network. This is a very useful feature 
considering that many disease-driving genes do not show significant signals within 
certain experiment platforms.  

A number of algorithms have been reported to address the subnetwork extraction problem 
(Faust, Dupont et al.; Scott, Perkins et al. 2005), but there are few standalone software 
packages designed for large networks. Here we present GenRev, a Python programming 
language package, toward this end. In the current version, GenRev implements three 
network search algorithms including Klein-Ravi algorithm (Klein and Ravi 1995), 
limited k-walk algorithm (Dupont, Callut et al. 2006) and a heuristic local search 
algorithm (Chuang, Lee et al. 2007). All three algorithms use a list of genes as input to 
query a large network, and then return a subnetwork which connects the input genes. The 
input genes are called terminals or seeds. We will use these two terms interchangeably in 
this document. GenRev also includes an analysis module that currently includes the MCL 
algorithm (Dongen 2000) and a gene ranking function.  

 

2. Preliminaries 

2.1 Citing GenRev 
The manuscript has been submitted and under review now. We will update the document 
as soon as it is accepted.  

2.2 Installation 
GenRev is implemented in Python programming language (http://www. python.org/). It 
uses the NetworkX library (http://networkx.lanl.gov/) (Aric, Daniel et al. 2008) as a 
foundation for graph data structures. NumPy package (http://numpy.scipy.org/) is used 
for numerical operations.  In this part, we will briefly introduce how to install the Python 
programming language and the third party packages.  

GenRev was developed in Python 2.6, NetworkX 1.3 and NumPy 1.3. Users must be 
particularly cautious about the Python version since from version 3.0, Python will have 
some grammar changes with the previous versions. Since Python is independent with 
operating systems, GenRev is an OS free package. However, it should be noted that 

http://www/
http://python.org/
http://networkx.lanl.gov/


GeneRev is primarily developed and tested in Linux and is much more convenient to use 
in Linux.  

2.2.1 Install Python language 
Python is a free programming language, and it is embedded in most Linux systems, if not 
all. Before installing your own Python, users can check the version of their default 
Python in shell using the command 

~$ python -V 

Once reinstallation is needed, download Python 
at http://www.python.org/download/releases/2.6.6/.  

Decompress the source file first, 

~$ tar -xzvf Python2.6.6.tgz 

Then, enter this directory: 

~$ cd Python2.6.6 

You will need proper permissions to install Python to local directory.  

~$ ./configure –-prefix=/my_directory/ 

~$ make 

~$ make install 

Python will then be installed to that directory. To add your Python directory to the system 
path, go to the home directory, edit the .bashrc file  

~$ vi .bashrc 

Add the Python installation directory to path 

export PATH=/my_directory/:$PATH 

Or you can add alias to your Python in .bashrc 

alias python=/my_directory/bin/python 

Save the .bashrc file, then  

source .bashrc 

http://www.python.org/download/releases/2.6.6/


Now type python –V to check your Python version.  

2.2.2 Install the packages 
Download NetworkX package at http://networkx.lanl.gov/download.html 

Decompress the zip file following the commands below  

~$ tar -xcvf networkx-1.3.tar.gz 

~$ cd networkx-1.3/ 

~$ python setup.py install 

Similarly, one can install the NumPy package. The download address for NumPy 
is http://sourceforge.net/projects/numpy/files/NumPy/. 

2.2.3 Run GenRev  
Download GenRev from http://bioinfo.mc.vanderbilt.edu/software.html 

Unzip the file by command 

~$ tar -xzvf GenRev1.0.tar.gz 

Enter the GenRev directory, you will find an executive file called GenRev. If this file 
does not have executive permission, use the following command to add it.  

~$ chmod +x GenRev 

To add GenRev to the system path, go to home directory, edit .bashrc 

~$ export PATH=$PATH:/where your GenRev is/ 

Then  

~$ source .bashrc 

Now, test your GenRev, type  

~$ GenRev –h 

If installed properly, the help document will be printed out to your screen.  

To test run GenRev, go to your GenRev directory, follow the commands below 

~$ cd testdata/ 

http://networkx.lanl.gov/download.html
http://sourceforge.net/projects/numpy/files/NumPy/
http://bioinfo.uth.edu/software.html


~$ GenRev –a steiner –g lesmis.net –t lesmis.terminal 

A message will be printed reporting the status of calculation and where the result files are 
written to.  

2.2.4 For Windows users 
Because GenRev is a command line package, one has to call GenRev in the MS-DOS 
environment.  

To install Python in Windows, download Python Windows installer 
at http://www.python.org/download/releases/2.6.6/.  

Then, add Python to your system path. Here is a simple tutorial on how to add system 
paths in Windows.  

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/5445775168.htm 

Restart the console. Once the path addition is successful, you can type Python in your 
MS-DOS console.  

Install NetworkX (http://networkx.lanl.gov/download/networkx/) and NumPy 
(http://sourceforge.net/projects/numpy/files/NumPy/).  

If both packages are installed successfully, you can import them in your Python 
environment. 

 >>> import networkx 

>>> import numpy 

Download GenRev at http://bioinfo.mc.vanderbilt.edu/software.html 

Unzip the file to local directory. In MS-DOS, enter the GenRev directory. Run 

python GenRev –a steiner –g testdata\lesmis.net –t testdata\lesmis.terminal 

Unlike the Linux system, users have to explicitly call GenRev with Python in Windows. 
Since it is more convenient to run GenRev in the Linux system, we will assume users are 
using Linux in the following document.  

 

2.3 How can I get help? 
For helps and feedbacks, send email to Dr. Zhongming 
Zhao,  zhongming.zhao@vanderbilt.edu.  

http://www.python.org/download/releases/2.6.6/
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/5445775168.htm
http://networkx.lanl.gov/download/networkx/
http://sourceforge.net/projects/numpy/files/NumPy/
http://bioinfo.uth.edu/software.html
mailto:zhongming.zhao@vanderbilt.edu


3. Quick start 

Here is a quick start example.  

3.1 Prepare your input files 
Prepare your input files according to the directions in section 6. Basically, all input files 
are text, white space delimited files and are easy to prepare. The network file contains 
two columns, with each line representing an interaction. In terminal file, each line 
represents a node. Additionally, you can find examples in the directory testdata/. 
Network files have a .net suffix, node score files have a .score suffix and terminal files 
have a .terminal suffix.  

3.2 Select algorithms 
GenRev has three algorithm options: “steiner”, “heuristic” and “kwalk”. “steiner” refers 
to the Klein-Ravi algorithm, which is an approximation algorithm for the node weighted 
Steiner tree problem (Klein and Ravi 1995). “heuristic” refers to the heuristic local search 
algorithm first proposed by Chuang et al. (Chuang, Lee et al. 2007). “kwalk” refers to the 
limited k-walk algorithm proposed by Dupont et al. (Dupont, Callut et al. 2006). It is 
important for users to accurately specify one of them. Note that when “heuristic” is 
specified, the node score file is a must to run GenRev correctly.  

3.3 Run the command line 
To view a full list of parameters, type  

$ GenRev –h 

GenRev needs users to input at least a network file (parameter -g) and a terminal file 
(parameter -t). Node score file is also needed for the “heuristic” algorithm.  

For demonstration, one can enter the testdata directory. An example command line is:  

$ nohup GenRev -a steiner -g lesmis.net  -t lesmis.terminal >log.txt 2>&1 & 

Report messages or error messages will be written to log.txt.  

3.4 See your results 
GenRev will automatically create an output directory for result files, unless users specify 
a location with the “-o” parameter. When running GenRev, the output directory will be 
printed to the screen (standard out) by default. The default directory name will be 
formatted as GenRev_analysis01202011_3, which, in this instance, means the third time 
running GenRev on 01/20/2011. If a user specified directory already exists, GenRev will 
report output error. Output files are formatted for Cytoscape network analysis and 
visualization platform (Cline, Smoot et al. 2007). Users can load the network file, node 
and edge attribute files to Cytoscape for visualizations.  

For details of the result files, see section 6.3.  



4. Algorithm 

In this section, we will briefly introduce the algorithms GenRev implements. For 
different algorithms, we may use the interchangeable terms “terminal” or “seed” to 
denote the user input gene lists.  

4.1 KleinRavi algorithm 
In graph theory, the notion of connecting a set of nodes in a graph is the Steiner tree 
problem. In the classical Steiner tree problem, the network is typically edge weighted 
graphs. In biological studies, genes are often scored instead of their interactions. 
Therefore, a variant of the classical Steiner tree problem, the node weighted Steiner tree 
problem, fits our questions more naturally. The goal of node weighted Steiner tree 
problem is, given each node a weight in graph and a set of terminals, how can we find a 
subnetwork linking all terminals while keeping the weight of the subnetwork minimum? 
Network score is the sum of scores of its nodes. From the definition, the algorithms for 
node weighted Steiner tree problem seeks connections that have a small cost by nature. 
However, in most biological studies, genes are often scored proportional to properties of 
interest. For example, a larger fold change of gene expression indicates a bigger 
probability of real functional relevance to the phenotypic differences. Therefore, a 
transformation is needed before we can apply any algorithm for this problem. To this end, 
GenRev transforms the user input gene scores internally into node cost by  

 1  ⁄  

          
  

Since the exact solution to this problem is NP-hard, many approximation algorithms were 
proposed. In GenRev, we implemented one of them proposed by P. Klein and R. Ravi 
(Klein and Ravi 1995). We call it Klein-Ravi algorithm.  

The algorithm assumes that the terminals have zero cost for generality. Initially every 
terminal is a tree itself. The algorithm uses a greedy strategy to iteratively merge the trees 
into larger trees until there is only one tree. In GenRev, we initialize the algorithm in a 
slightly different way. Instead of setting each terminal as a tree, we first map terminals to 
the network to see if they have any direct interactions. If some terminals can form a 
connected graph, then the graph will be used as an initial tree.  

The iteration of the algorithm selects a non-tree node and a subset of at least two of the 
current trees to minimize the ratio  

 

The minimum ratio defined above is called quotient cost. Distance along a path is the 
sum of the node costs in the path but does not include the cost of the end nodes. Once a 
node is selected, the shortest path is used to merge node and trees into one. 

This algorithm is implemented in the NWSteiner module in GenRev. For more details of 
the algorithm, please refer to the original paper (Klein and Ravi 1995).  



4.2 Limited Kwalks algorithm 
The limited K-walks algorithm was proposed by P. Dupont et al. in 2006 (Dupont, Callut 
et al. 2006). The algorithm simulates random walks on a graph by the Markov Chain 
model. The relevance of an edge and a node in relation to the seed genes is evaluated by 
the expected times random walk passes starting from one seed to any of the others. Here, 
we briefly introduce the mathematics of this algorithm. A detailed elaboration can be 
found in the original paper.    

A graph can be described as an adjacency matrix, where  is the connectivity between 
vertex  and vertex . Markov chain is used to model a graph, with each node as a state at 
time .  denotes the possibility of transiting from vertex  to vertex  and can be 
calculated as  where  is the edge score between  and  and  is the degree of 
vertex . 
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If Markov chain has a set of absorbing states (denoted as K, e. g. terminals in GenRev), 
and the random walk starts from node x, the modified transition would be 

Then the transition matrix is rearranged to  

Where  denotes the  matrix for transient states,  is a 
 matrix, for transition probability from transient states to 

absorbing states.  is identity

After  steps, the transition matrix is , so  defines the probability of 
transiting from  to  in  steps. 

Let expectation of  is the expected number of times of the transition events from  
to  for any time index , which can be calculated as  

 is called fundamental matrix. 

The edge passage time  is calculated as  

 
If the random walks are limited to a maximal walk length to , the expected passage 
times can be computed as  
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The probability of a walk of length  starting in  is given by 

The probability of visiting edge  in such a walk, if  is a transient state, is given by 

If  is an absorbing state, then 

Thus, the limited mean edge passage time are defined for a maximal walk length  is 

At this point, a relevance score is calculated for each edge. A subnetwork is obtained by 
keeping only edges with relevance scores above a threshold value . In GenRev, we 
select the maximal relevance score that can lead to a connected subgraph as the threshold.  

Parameters pertinent to limited k-walk algorithm is ‘-L’ and ‘-it’, which define the 
maximum walk length and how many iterations wanted. By default, GenRev uses L=50 
and it=1.  

4.3 Heuristic local searching algorithm 
The heuristic local searching algorithm is slightly different from the other two algorithms 
in that it does not look for paths and genes connecting the input seed genes. Rather, it 
expands the seeds according to certain rules, which preferentially add high score nodes to 
the seed graph. After convergence, the algorithm will return a subnetwork that represents 
densely scored regions in the molecular network. Even though each individual gene in 
this region may not be ranked at a very top by score, genes in such a region may 
cooperate together and contribute to certain phenotypic changes.  

For a set of seeds, the algorithm first generates a vertex induced subgraph, and then it will 
be used for expansion iteratively until converged. In each iteration, graph score is defined 
as  

Where  is the graph score,  is vertex score.  

The constraint of the local search is, if the maximal score within the local distance of  to 
any node of the current subgraph exceeds , the node will be added to the 



network. Otherwise, the expansion stops.  is score increment rate, For a node with score 
 and a subgraph with score , the score increment rate is defined as  

 

log log

Because  and  are positive values,   has a range of (0, 1).  

Shortest path will be used to link the node to networks. By default, the local distance  is 
set to 2 and the increment rate  is 0.1. User can change the two parameters by “-d” and 
“-r” options when running GenRev.  

Note that the network score is defined as the sum of all nodes’ scores. Other scoring 
themes are available too in previous reports (Ideker, Ozier et al. 2002; Nacu, Critchley-
Thorne et al. 2007). In GenRev, we select sum method to ensure the convergence of 
network expansion because the sum method will let the network scores increase linearly. 
With a pre-specified , the threshold score for including a new node therefore keeps 
increasing too. Eventually when the threshold reaches a value that no more nodes can 
fulfill, the expansion converges.  

4.4 Time complexity and network pruning 
Suppose network size (number of edges) is , network order (number of nodes) is , and 
the number of seeds is . According to (Faust, Dupont et al.), time complexity of  the 
Klein-Ravi algorithm is . For limited k-walk algorithm, 
time complexity is  where  is the maximum walk length. If the network is dense, 
time complexity can reach the upper bound . For big networks such as the 
human protein interaction network (more than 10,000 nodes from the current PINA 
version), the run time can be very long.  

To reduce the computation time, an effective approach is to prune the large networks to 
smaller networks. In GenRev, we introduce a parameter called “pruning factor”. The 
ground for this operation is that gene functional distances are negatively correlated with 
their network distances (Sharan, Ulitsky et al. 2007). In other words, if two genes have a 
long distance in the network, even though they are connected by a path, their functional 
associations might be weak. In our application, we aim to find functional associated 
genes with the terminal genes. Following the above theory, if genes are “too far” from 
these terminals, they might be less informative in connecting the terminals, even if they 
are indispensable in these connections. Therefore, it is plausible to prune these nodes 
from the large network to generate a more compact but yet informative network. Such a 
network pruning will reduce the search space on the graph without loss of much 
information.  

 To illustrate this concept, we designed a small graph, as is shown in figure 1. Node a, h, 
g and q are terminals. If we prune all nodes that have shortest distances larger than 1 with 
the terminals (parameter s=1 in GenRev), that is, only the direct interactors of the 
terminals can be kept after pruning, then node m and t will be pruned and path b-d will be 
found to connect the terminals. If no pruning is performed, path b-d is still the path to 
connect these terminals. That means, this network pruning setting will not affect the 
searching results, given the maximal distance among these terminals is 3. In other words, 
setting pruning factor s=1 in GenRev will allow the connection of terminals with 



maximal distance 3. In molecular networks, functional relationships of genes having a 
distance more than 3 are assumed to be weak.  

If there is another node c between b and d, then this setting will prune c and consequently 
split the terminals into two separate networks, e.g. {a, b, h} and {g, d, q}. Otherwise if no 
pruning is conducted, path b-c-d will be identified and the distance between {a, h} and {g, 
q} will be 4. If we put the terminals into the network context, it is apparent that {a, b, h} 
and {g, d, q} belong to different modules. While c is an obvious bridge for the two 
modules, exclusion of c by pruning will nevertheless allow the re-discovery of the two 
modules by identifying b and d for terminal set {a, h} and {g, q} respectively.  

By default GenRev sets the pruning factor to 1 to include the paths within shortest path 
length 3 among the terminals. But considering the vast possibilities of the user defined 
networks, GenRev allows users to specify this parameter in the command line by 
parameter s.  

To evaluate the efficiency of network pruning, we randomly selected different sets of 
terminals from the human protein-protein interaction network and applied two pruning 
factors. The network was downloaded from Protein Interaction Network Analysis 
platform (PINA, http://csbi.ltdk.helsinki.fi/pina/home.do) (Wu, Vallenius et al. 2009) as 
of 03/04/2010. It contains 10661 genes and 52869 non-loop edges (The network is 
available in the GenRev testdata directory with name “ppi_name.txt”). For each seed set 
size, random sampling was performed 100 times. The results are shown in table 1. Setting 
s=1 will prune most of the nodes for different sets of terminals. For example, for a set of 
200 terminals, this process will remove 84.75% nodes, and the average size after pruning 
is 1626. Loosing the pruning factor will reduce the pruning ability dramatically, from 
84.75% to 23.29% for the 200 terminals.  

  

 
Figure 1. A small graph to demonstrate network 
pruning.  

 



  Network pruning percentage 

  s=1  s=2 

seeds number  order  stdv  prune%  order  stdv  prune% 

50  504  100  95.27%  5760  438  45.97% 

100  913  149  91.44%  7040  283  33.96% 

200  1626  173  84.75%  8178  156  23.29% 

500  3169  180  70.27%  9253  68  13.21% 

  
Table 1. Network pruning efficiency in human 
protein interaction network.   

 

We then tested if the network pruning will change the results significantly. Similarly we 
used the human protein-protein interaction network (Wu, Vallenius et al. 2009). For 
terminals, we used a gene expression data set (Wurmbach, Chen et al. 2007). Briefly, 
genes were ordered by their fold changes, and top genes were used as terminals. For 
details on the microarray data analysis, please see section 7.2. We tested top 50, 100 and 
200 genes as seeds. Network pruning was performed with s=1 and s=2. To evaluate 
consistency, we calculated the resulting subnetwork overlaps for these two pruning 
factors using  

,  

Where A and B are vertex sets. The results are shown in figure 2. For both algorithms, 
the result subnetworks have high consistency, ranging in overlap from 67%-89%. We 
also calculated the overlaps of nodes with more than 4 interactions. The trends are similar 
(figure 2).  

 
Figure 2. Comparison of subnetworks for different pruning 
factor s=1 and s=2 with different algorithm.  



One concern is that network pruning may disperse the terminals into disjoint parts in the 
result subnetworks because many nodes would be removed while they might be 
indispensible to connect the terminals. To address this concern, we calculated the 
percentage of the giant components to the result subnetworks (table 2). In most cases, 
giant components take over 90% of the whole result network. The pruning factor setting 
seems not impact this value much. In other words, even the strongest pruning will allow 
the connection of the vast majority of the terminals. This is expected because many of 
deregulated genes are hypothesized to be under co-regulations of some transcriptional 
programs or other mechanisms. These functional associations predispose them within 
close neighborhoods in networks.  

algorithm  terminal  s1  s2 

Klein‐Ravi  50  94.55%  94.74% 
Klein‐Ravi  100  95.33%  96.46% 
Klein‐Ravi  200  97.60%  98.23% 
kwalk  50  88.68%  57.41% 
kwalk  100  96.06%  93.57% 
kwalk  200  97.83%  94.31% 

 
Table 2. The ratio of connected nodes in the 
result subnetworks for different pruning factor.   

 

By network pruning, software run time is greatly improved (table 3). The test was done in 
a Linux server with 2.6 GHz CPU and 16 Gb memory.  

  Klein‐Ravi  kWalk 

terminals  s=1  s=2  s=1  s=2 
top50  7 sec  6 min  25 sec  2.8 h 
top100  68 sec  38 min  8 min  17.6 h 
top200  8 min  116 min  42 min  53.4 h 

 
Table 3. Run time for algorithms and 
pruning factors.   

 

Since the heuristic local search algorithm is very fast, network pruning is not applicable 
to it in GenRev.  

4.5 Markov Clustering Algorithm (MCL) 
By default, GenRev applies MCL algorithm (http://www.micans.org/mcl/)  (Dongen 
2000) to the result subnetworks to identify modules if the subnetworks are not too big. A 
modular view of the subnetwork enables people to quickly inspect the results and 
discover complexes or pathways revealed by the network. Modularity, a measurement of 
how good the division is by MCL, is provided. Though originally created to quantify 
graph clustering, it is able to show how modular a graph is. It ranges from -1 to 1. A 
value of 0 indicates that the modular structure is no longer than would be expected by 
chance. Positive values indicate the modularity is larger than random.  

http://www.micans.org/mcl/


The MCL algorithm iterates two operations called expansion and inflation, respectively. 
In GenRev, we implemented a prototype of this algorithm and restricted the input 
network order (number of nodes) to be less than 500. Otherwise if the network order is 
larger, this analysis procedure will be omitted. In GenRev, the MCL inflation factor is set 
to 2.  

For more information about MCL, please visit http://www.micans.org/mcl/ and the 
original paper. 

4.6 Gene ranking 
To help biologists prioritize genes, GenRev provides gene rankings by default. Genes in 
the resulting subnetwork are ranked by three measurements degree, betweenness and 
score.  

While the grounds for ranking genes by score are obvious, ranking by degree and 
betweenness serves a way to prioritize genes by their topological importance in the 
network. Previous studies reported that hub genes (high degree) and bottleneck genes 
(high betweenness) in gene networks are more important for cell survivals (Jeong, Mason 
et al. 2001; He and Zhang 2006; Yu, Kim et al. 2007). It's important to note that the 
ranking only reflects the gene's position in the subnetwork rather than the global network. 
This is one of GenRev's initiatives that highlight genes in a context dependent manner.  
Top 20 genes are returned for each measurement in GenRev. 

5. Input, output and parameters 

GenRev requires users to input a network file, a set of terminals and optionally user can 
input a gene score file.  

5.1 Input files  

5.1.1 Network file 
Network file is a white space (tab or space) delimited file. The file should have at most 
three columns, where the first two columns are genes, and the optional third column is 
edge score. Lines with “#” as start are considered annotations and will be omitted when 
loading networks. A simple illustration is shown below. 

#GeneA  GeneB  Score(optional)

a  b  2 
a  c  1.9 
a  d  0.5 
a  e  3.4 
b  c  4.1 
b  d  0.5 
b  e  3.6 
c  d  1.5 

 

 

 

 

 

 

 

http://www.micans.org/mcl/


If edge scores are present, GenRev requires them to be positive values. If negative or zero 
scores are encountered, GenRev will report an I/O error and exit.   If edge scores are not 
specified, GenRev will assign 1 to the edge. In Klein-Ravi algorithm and heuristic local 
search algorithm, edge scores are not used since both algorithms use only node scores. 
Even if the user inputs edge scores in a network file, they will be coerced to 1 for the 
algorithms.  

5.1.2 Node information file 
Node file gives node scores to GenRev. If no node file is given in the command line, 
GenRev will consider each node to be of equal weight in calculation. Node file is a must 
for the heuristic local search algorithm. For k-Walk algorithm, GenRev only considers 
edge scores at the present version.  

The node file is a two column, white space delimited file. The first column is gene names, 
and the second column is gene scores. GenRev reads the node information from this file 
and then maps scores to nodes in the network. If the node file contains only a subset of 
nodes in the network, then those nodes will be used to extract a node induced subnetwork, 
which is used as global network. In other words, nodes of the actual global network 
used in calculation come from an intersection of the input network and nodes 
provided in the node file.  
Below is a simple example how the file looks like.  

 

 

 

 

5.1.3 Terminal file 
Terminal file provides the terminal genes for GenRev, and, thus, it is indispensable in the 
command line. It has one column with each line representing a gene name.  

5.2 Output files 
At the current version, GenRev will automatically output all result files to a local 
directory with a name pattern “GenRev_analysis+day+month+year_number,” unless the 
user has specified an output directory using parameter “-o” If the specified output 
directory has already existed, I/O error will be reported by GenRev.  

By default GenRev generates 14 files. The following table gives a summary of these files.  

File Name  Annotation 

summary.txt  Overview of the current run  
terminals.txt  Terminals used in calculation 
global_net.sif  SIF format for global network 
global_edge_cat.eda  Edge categorization for global network 
global_edge_score.eda  Edge scores for global network 

#Gene  Score 

a  1.0 
c  5.0 
b  2.0 
e  5.0 
d  9.0 



global_node_cat.noa  Node categorization for global network 
global_node_score.noa  Node scores for global network 
sub_net.sif  SIF format for subnetwork 
sub_edge_cat.eda  Edge categorization for subnetwork 
sub_edge_score.eda  Edge scores for subnetwork 
sub_node_cat.noa  Node categorization for subnetwork 
sub_node_score.noa  Node scores for subnetwork 
modules.txt  Modules for subnetwork by MCL 
gene_rank.txt  Gene ranking for subnetwork 

 

The summary.txt file gives a summary of the current GenRev calculation. The module.txt 
and gene_rank.txt files give clustering analysis and gene ranking analysis result. if ‘-cl’ is 
set to FALSE, graph clustering analysis will be omitted.  

GenRev does not provide network visualization.  Instead, it generates SIF format files so 
users can use the Cystoscape software (Cline, Smoot et al. 2007) to visualize the 
networks. GenRev also generates node and edge attribution files (.noa and .eda files), 
thus allowing users to load these files into Cytoscape and set different visual properties 
for the attributes. Files with ‘global’ prefix are global network related files used in the 
calculation, and files with ‘sub’ prefix are the extracted subnetwork related files.  

Under several circumstances, GenRev will automatically adjust the input data for the 
selected algorithm. For instance, even though each edge has different scores in the large 
network, GenRev will coerce the edge scores to equal when running the Klein-Ravi 
Steiner algorithm. In other words, the “real” networks in computations may be different 
with the user input networks. To help users check with their data, the “global” files in the 
result directory provide the “real” networks and their attributes. Meanwhile, nodes in 
large network are categorized into “terminal”, “linker” and “other”. Similarly edges are 
categorized into “subnetwork” and “other”. Users can use these attributes to visualize 
subnetworks in the large network. 

In subnetworks, edges are categorized into “terminal_terminal”, “terminal_linker” and 
“linker_linker” to describe edges with different sources of end nodes. Nodes are 
categorized into “terminal” and “linker”.  

If MCL was called, modules.txt file would be present in the result directory. This is a 
result file for graph clustering analysis to the subnetwork, not the large network.  Each 
line denotes a module, Modularity is computed according to its definition (Newman 
2004).  

5.3 Parameters 
To view GenRev parameters, type ‘GenRev -help’ in command line.  

All parameters now in GenRev are listed below. 
‐h        Show all parameters. 

‐v        Show the current version of GenRev. 

‐a        Algorithm selection. Three algorithms are available, please specify one of 



          'heuristic', 'steiner', 'kwalk' for your selection. Note there are some 

          algorithm specific parameters.  

‐s        The pruning factor. Default is 1. Set to F if no network pruning 

          is wanted. This factor defines how GenRev reduces the global network to a 

          more compact, but yet informative network.  

‐g        The network file path. Network file is space or tab delimited. The first 

          two columns are vertices, the third column is edge score. Larger score 

          indicate more close relations. This edge column is optional. If omitted, 

          all edges are thought to have equal scores of 1. 

‐n       The node score file. Node file is space or tab delimited. The first column 

          is node name, and the second column is node score. Node scores should be 

          positive. This file is optional. If omitted, all nodes are thought to have 

          equal scores of 1. 

‐t        The terminal nodes file. In GenRev, the input genes for subnetwork 

          extraction are called terminals. This file is of single column, with each 

          line is a node name. 

‐d       Set the search radius in heuristic local search algorithm. Only valid when 

          algorithm parameter set to 'heuristic'. Default value is 2. It should set to 

          positive integers.  

‐r        Set the network score increment rate. Default is 0.1, range is (0,1). Only 

          valid for heuristic algorithm. 

‐L        Set the maximal walk length in limited k‐walk algorithm. Default is 50. It 

          should set to positive integers. 

‐it       Set the iteration times for k‐walk algorithm.Default is 1.  

‐cl       If MCL clustering will be applied. Default if True. Alternative option is False. 

          If result network have more than 500 nodes, ‐cl is automatically set to F. 

‐o        The output directory for the analysis results.If omitted, GenRev will 

          automatically create output directory in the current location.   

In the following, we will elaborate on some algorithm specific parameters.   

-s 

The pruning factor. This parameter defines if and how the network pruning is done. 
Assuming it is set to , then the  orders of the seeds (nodes with shortest distances less 
or equal to  to the seeds) are kept while others are pruned to reduce the search space on 
the graph.  Default s is 1. If no network pruning is needed, set s to False. Note that 
without network pruning, the runtime may be very long for large networks. See section 4 
for more details. 



-d  

This parameter is heuristic local search algorithm specific and defines the local search 
radius. If d=1, then the direct neighbors of the seed graph will be examined. Similarly, if 
d=2, the neighbors of order 2 will be examined. Though in theory users can set d to 
whatever values, we recommend setting d at no more than 2, since, if two genes have a 
relation intermediated by the other two genes, their relations might be weak.  

-r 

This is a score increment rate defined in heuristic local search algorithm, with the 
equation shown as  

 

Where  is the maximum node score within the d distance,  is the current network 
score. If  is far larger than ,  is getting close to 1. Oppositely,  gets closer to 0. By 
default, GenRev sets  to 0.1, but users can change it by “-r” parameter.  

-L  

This parameter defines the maximum walk length in the limited k-walk algorithm. The 
default value is 50.  

-it 

It defines how many iterations GenRev will run the limited k-walk algorithm. By default, 
GenRev will run it 1 time (iteration=1), but if this parameter is set to other values, e.g. 2, 
GenRev will iteratively run this algorithm by using the nodes in the resulting subnetwork 
from the previous run as terminals.  

6. Toy network models 

In this part, we will demonstrate the three algorithm implementations in GenRev with 
some toy models.  

6.1 KleinRavi algorithm. 
First, we will use a simple graph to show how the algorithm works. In the graph shown in 
figure 1, red nodes are terminals, and blue nodes are so called Steiner nodes, which 
connect the terminals. We also call these nodes “linkers”. Grey nodes are not included in 
the result subnetwork. We keep them here for demonstration purpose only. Each node has 
a positive score value. GenRev first transforms these scores to node weights, as shown in 
the following table (also read section 4.1).  

 

Node  Score  Weight 

a  1.0  1.0 
d  1.5  0.8 



c  0.5  1.4 
g  2.0  0.7 
…  …  … 

 

Then, terminals are mapped to the global graph. In this toy, two subgraphs (trees) are 
acquired, namely the g-e-f subgraph (tree 1) and b subgraph (tree 2). For the remaining a, 
c, d, GenRev calculates a quotient cost for each of them, as shown in the following table.  

Node  quotient cost  path to tree 1  path to tree 2 

a  1.2  a‐c‐g  a‐b 
c  1.2  c‐g  c‐d‐b / c‐a‐b 
d  1.1  d‐c‐g  d‐b 

 

Node d is selected to merge the two trees since it has the minimum quotient cost. Paths 
between d and the two trees are used, generating a subgraph consisting of b-d-c-e-g-f. It 
is very important to note that node a and d have very similar topological positions in the 
graph, but their score differences drive GenRev to select d eventually.  

Figure 1. A toy graph to illustrate the implementation of Klein‐Ravi algorithm in 
GenRev. Rectangular red nodes are terminals, circular blue nodes are Steiner nodes 
(linkers) which connect the terminals. Node size is proportional to its score.  

 
 

To further illustrate the use of this algorithm, we applied it to another network, the co-
appearance network of characters in the novel of Les Miserables (Knuth 1993). For 
simplicity, all nodes in the network are assumed as equal scores. We randomly selected 
12 characters as terminal nodes. The extracted subnetwork is shown in figure 2. It clearly 
shows a hub node Valjean, who is a main character in the novel. Some other main 
characters are also identified, such as Fantine and Myriel.  



6.2 Limited kwalk algorithm 
We use a toy graph (Figure 3), a variant network of figure 7 in(Dupont, Callut et al. 
2006), to demonstrate limited k-walk algorithm. Like other examples, red rectangular 
nodes are terminals, blue nodes are linkers and grey nodes are not present in the resulting 
network, but appear for demonstration purposes here. An important characteristic of this 
toy graph is that it has two obvious cliques. Our terminal set contains 3 nodes in the right 
clique. By random walk, GenRev successfully connects the other 2 nodes to the terminal 
set. By contrast, there is only one node left in the left clique, and the small number of this 
seed node is not able to bring enough information for GenRev to identify its other clique 
members.  

 

Figure 2.Use Steiner tree algorithm to extract the subnetwork from character 
co‐appearance network in the novel Les Miserables. Red nodes are randomly 
selected terminals, and blue are linkers.  

 

 

 



 

 

 

 

 

Figure 3.Relevance subnetwork by limited k‐walk algorithm. Red rectangular 
nodes are terminals, blue nodes are linkers, grey nodes are present just for 
illustration.  

It is interesting to see the differences between the Klein-Ravi algorithm and limited k-
walk algorithm. While k-walks can pick up other clique members (f and h), the Klein-
Ravi algorithm can only find f. These differences stem from the Klein-Ravi algorithm 
seeking to find the minimum number of nodes to connect terminals, while k-walk seeks 
to find the most relevant nodes in the information flow from terminal to terminal. It is 
very difficult to compare the superiority of the two algorithms since both have 
advantages and disadvantages. The Klein-Ravi algorithm can highlight the most 
important hubs, while missing some important information especially regarding the 
modular structure of biological networks. The limited k-walk algorithm, on the other 
hand, may result in very comprehensive networks, which make the interpretation 
challenging.  

To give one more example of this algorithm, we run the same terminals to the Les 
Miserables character network using the same terminals. Result network is shown in 
figure 4.  



 

 

 

Figure 4. Applying limited k‐walk to the character co‐appearance network. 
Red rectangular nodes are terminals; blue nodes are linkers identified by 
GenRev.  

Some apparent modular structures are present, which are not seen in the Klein-Ravi 
algorithm result. In fact, the modularity of this resulting network is 0.57. The main 
character, Valjean, is found and heighted as the biggest hub. Other main characters, like 
Fantine and Myriel, are also present. 



6.3 Heuristic local search algorithm 
To illustrate the heuristic local search in GenRev, we designed a small toy graph, 

 

Figure 5. A toy graph shows how the heuristic local search algorithm works. Numbers 
in node labels are node scores. Red rectangular nodes are seeds, and blue circular 
nodes are incorporated into the resulting subnetwork by seed expansions. 
Parameters used in A is d=1, r=0.1, and in B is d=2, r=0.1.  

As is shown in figure 5, red rectangles represent seeds, and numbers in node labels 
denote scores. With parameters set to d=1, r=0.1 in figure 5A, the seed graph G(V={e,m}) 
initially has a score 5+8=13, and then finds its d=1 order of neighbors. The maximum 
score in neighbors is 4 for node g, fulfilling the expansion criterion that 

13 0.1/0.9 , node l is added, too, at which point
 

1⁄ , namely 4 . Similarly  



no addition meets the  restriction. If the searching radius is set to d=2, the expansion 
will be more aggressive, resulting in a much bigger network (figure 5B).  

7. Case studies 
7.1 Applying GenRev to psychiatric disorders 
We had applied an early version of GenRev to psychiatric disorder studies. In a 
schizophrenia study, we used the Klein-Ravi algorithm to extract a schizophrenia 
network, and subsequently compared this network to the cancer specific network (Sun, 
Jia et al.). We showed that the schizophrenia genes are weakly connected and distribute 
peripherally in the network. For details, please refer to our original paper (Sun, Jia et al.).  

In another study, we used a set of genes localized in a copy number variation region and a 
set of genes annotated to be related with epilepsy in HuGE as terminals, and aimed to 
construct epilepsy specific subnetworks (Jia, Ewers J et al. 2011). The copy number 
variation data comes from a recent study (Heinzen, Radtke et al.). The epilepsy related 
genes from HuGE were determined by a page search with key term “epilepsy”. Using 
these two sets of terminals, we constructed two subnetworks. By comparing the two 
networks, we identified 20 genes in common, and then we assigned them high priority 
candidates for epilepsy. We then used microarray data to evaluate their expression 
patterns. Two of them, CHRNA1 and GABRA1, are differentially expressed genes. We 
project that they can be used as biomarkers, or potentially therapeutic targets. For details, 
please refer to our paper (Jia, Ewers J et al. 2011). 

7.2 Applying GenRev to a microarray data set  
We analyzed a microarray data set to illustrate GenRev. The data set was downloaded 
from NCBI Gene Expression Omnibus (GEO) database (Barrett, Troup et al.). The 
authors used Affymetrix Human Genome U133 plus 2.0 arrays to characterize the stage 
differences of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC) 
(Wurmbach, Chen et al. 2007). Specifically their findings provided a comprehensive 
molecular portrait of genomic changes in progressive HCV-related HCC.  

To re-analyze this data, we first categorized the samples into precancerous and cancerous 
groups. Precancerous samples consist of normal, cirrhosis and dysplastic liver samples, 
and cancerous samples consist of early and advanced stage HCC samples. We excluded 3 
samples from cirrhotic liver tissue of patients without HCC. Since this data set had been 
already normalized when it was submitted to GEO, no more normalization was 
performed in our analysis. For genes with more than one probe set in the array platform, 
we used the strongest signal in each sample to collapse those probe sets.  

To run GenRev, we calculated expression fold changes for each gene between the two 
groups at the logarithm scale. Negative values were transformed to their absolute values. 
Genes were then ranked decreasingly. Protein interaction network from PINA (Wu, 
Vallenius et al. 2009) was used as the large network.  As of 03/04/2010, the PINA 
platform contained 10,661 unique nodes and 52,869 edges. Each node represents a gene 
product (i.e., protein encoded by the gene) and each edge represents an interaction 
between the two linked nodes. 



The top 200 genes were used as terminals. Three algorithms were run respectively. 
Ranking genes by their degrees revealed that a cell cycle regulator, CDK1, was the 
largest hub protein (with most interactions) in all resulting networks. Previous studies 
have reported that CDK1 is a very important component in the HCV core protein 
mediated deregulation in HCC (Spaziani, Alisi et al. 2006). A pilot study reported that 
inhibition of CDK1 could decrease tumor growth and is a potential therapy for 
hepatoblastoma tumors and some other tumors (Goga, Yang et al. 2007). In this example, 
GenRev prioritized it as hub protein in networks. In the microarray data set, this gene 
ranked 66th by fold change. Using gene expression alone, this gene may be missed. But 
GenRev shows that the networks bring additional information and eventually lead to its 
identification.  

Many other genes were also prioritized, such as UBB, TP53, GRB2 and others. It is not 
surprising to see TP53 in the lists because it is widely recognized as a tumor gene (Caron 
de Fromentel and Soussi 1992). UBB is known to participate in the protein degradation. 
Recently it is reported to be a regulatory gene in cancer (Wu, Tian et al.). GRB2 is also 
observed relevant with HCC (Yoon, Jeong et al. 2001).  

Please visit http://bioinfo.mc.vanderbilt.edu/GenRev.html for complete results.  

 

8. Conclusions and remarks 

A key task in biomedical informatics research is to understand the underpinning 
mechanisms of diseases and identify causal genes. While many technologies produce lists 
of genes that show changes at certain layers of the cellular system, interpreting these lists 
is challenging. The large scale networks shed lights on this task because we can 
understand these gene lists in network context. GenRev was developed under this 
premise. It allows users to input a list of genes as seeds to extract relevance networks, 
which may then be used to study the functional associations among those seed genes and 
prioritize specific genes from their topological structures and scores.  

By its three algorithms, GenRev guarantees to generate gene relevance networks. The 
next step would be how to interpret the networks and give insights into their functions. In 
the current version, GenRev provides clustering analysis and gene ranking analysis. 
However, we are aware that collaborative efforts are necessary to the successful creation 
of a high quality tool. We look forward to feedbacks from GenRev users, and hopefully 
we will make GenRev better and better according to these feedbacks 

9. Notes 

Part of GenRev (the node weighted Steiner tree algorithm) was implemented while Dr. S. 
Zheng was a Ph.D. student in the Shanghai Institute for Biological Sciences under the 
mentorship of Dr. Yixue Li and Dr. Pei Hao. Zhao lab members, particularly Drs. 



Jingchun Sun and Peilin Jia provided many helpful discussions and suggestions for the 
development of GenRev.  
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