
GenRev: a software package to
explore gene relevance in
molecular networks (v1.0)

Siyuan Zheng, Zhongming Zhao

Contact: zhongming.zhao@vanderbilt.edu

Department of Biomedical Informatics, Vanderbilt University

Jan 21, 2011

Contents
Contents .. 1
1. Introduction ... 2
2. Preliminaries .. 3
2.1 Citing GenRev .. 3

2.2 Installation ... 3

2.2.1 Install python language ... 4

2.2.2 Install the packages ... 5

2.2.3 Run GenRev ... 5

2.2.4 For Windows users .. 6

2.3 How can I get help? ... 6

3. Quick start.. 7
3.1 Prepare your input files ... 7

3.2 Select algorithms ... 7

3.3 Run the command line .. 7

3.4 See your results ... 7

4. Algorithm... 8
4.1 Klein‐Ravi algorithm .. 8

4.2 Limited K‐walks algorithm ... 9

4.3 Heuristic local searching algorithm ... 10

4.4 Time complexity and network pruning ... 11

4.5 Markov Clustering Algorithm (MCL) .. 14

4.6 Gene ranking ... 15

5. Input, output and parameters ... 15
5.1 Input files ... 15

5.1.1 Network file ... 15

5.1.2 Node information file .. 16

5.1.3 Terminal file ... 16

5.2 Output files .. 16

5.3 Parameters .. 17

6. Toy network models .. 19
6.1 Node weighted Steiner tree algorithm. ... 19

6.2 Limited k‐walk algorithm ... 21

6.3 Heuristic local search algorithm .. 24

7. Case studies ... 25
7.1 Applying GenRev to psychiatric disorders ... 25

7.2 Applying GenRev to a microarray data set .. 25

8. Conclusions and remarks ... 26
9. Notes .. 26
10. References .. 27

1. Introduction

Genomic experiments, such as RNA-Seq, proteomics, and microarrays, often produce
lists of genes, ranging in size from tens to thousands. While these lists are typically
ranked based on certain measurements and genes are selected accordingly for validation
and further functional studies, interpreting these lists is a challenging bioinformatics task.
A number of questions have been raised so far, mainly focusing on the associations of
these genes. Enrichment analysis, which uses gene annotation resources to determine if
the gene list is overrepresented in any of the functional themes (pathways, functions, etc.)
is particularly useful. Many insights were obtained using this approach. Corresponding
tools and algorithms were developed to address different aspects of genomic studies
(Beissbarth and Speed 2004; Subramanian, Tamayo et al. 2005; Zhang, Kirov et al. 2005;
Zheng, Sheng et al. 2008). The commonly used knowledge bases include Gene Ontology
(Ashburner, Ball et al. 2000), KEGG (Kanehisa, Goto et al.) and others like.

The high throughput biological molecular networks contain association information for
thousands of genes in the form of direct and indirect interactions, thus providing

promising alternative to answer these questions. In these networks, nodes typically
represent genes, while edges represent their interactions. In a variety of molecular
networks, such as protein-protein interaction networks, genetic interaction networks,
regulatory networks, interactions often hint at close functional associations between
genes. Previous reports have revealed many novel insights into these networks (Barabasi
and Albert 1999; Spirin and Mirny 2003). Recently many studies have utilized them to
examine biological patterns, discover biomarkers etc (Sun, Jia et al.; Jia, Ewers J et al.
2011).The advantage of using network approaches is obvious. Rather than returning
pathways or function categories by the enrichment analysis based tools, network
approaches return subnetworks. Subnetworks are able to show gene interactions,
community structures, and other information in a systematic framework. Hub nodes or
bottleneck nodes, which may not be seen in the original gene list, can be prioritized in the
network as key connecting components in the network. This is a very useful feature
considering that many disease-driving genes do not show significant signals within
certain experiment platforms.

A number of algorithms have been reported to address the subnetwork extraction problem
(Faust, Dupont et al.; Scott, Perkins et al. 2005), but there are few standalone software
packages designed for large networks. Here we present GenRev, a Python programming
language package, toward this end. In the current version, GenRev implements three
network search algorithms including Klein-Ravi algorithm (Klein and Ravi 1995),
limited k-walk algorithm (Dupont, Callut et al. 2006) and a heuristic local search
algorithm (Chuang, Lee et al. 2007). All three algorithms use a list of genes as input to
query a large network, and then return a subnetwork which connects the input genes. The
input genes are called terminals or seeds. We will use these two terms interchangeably in
this document. GenRev also includes an analysis module that currently includes the MCL
algorithm (Dongen 2000) and a gene ranking function.

2. Preliminaries

2.1 Citing GenRev
The manuscript has been submitted and under review now. We will update the document
as soon as it is accepted.

2.2 Installation
GenRev is implemented in Python programming language (http://www. python.org/). It
uses the NetworkX library (http://networkx.lanl.gov/) (Aric, Daniel et al. 2008) as a
foundation for graph data structures. NumPy package (http://numpy.scipy.org/) is used
for numerical operations. In this part, we will briefly introduce how to install the Python
programming language and the third party packages.

GenRev was developed in Python 2.6, NetworkX 1.3 and NumPy 1.3. Users must be
particularly cautious about the Python version since from version 3.0, Python will have
some grammar changes with the previous versions. Since Python is independent with
operating systems, GenRev is an OS free package. However, it should be noted that

http://www/
http://python.org/
http://networkx.lanl.gov/

GeneRev is primarily developed and tested in Linux and is much more convenient to use
in Linux.

2.2.1 Install Python language
Python is a free programming language, and it is embedded in most Linux systems, if not
all. Before installing your own Python, users can check the version of their default
Python in shell using the command

~$ python -V

Once reinstallation is needed, download Python
at http://www.python.org/download/releases/2.6.6/.

Decompress the source file first,

~$ tar -xzvf Python2.6.6.tgz

Then, enter this directory:

~$ cd Python2.6.6

You will need proper permissions to install Python to local directory.

~$./configure –-prefix=/my_directory/

~$ make

~$ make install

Python will then be installed to that directory. To add your Python directory to the system
path, go to the home directory, edit the .bashrc file

~$ vi .bashrc

Add the Python installation directory to path

export PATH=/my_directory/:$PATH

Or you can add alias to your Python in .bashrc

alias python=/my_directory/bin/python

Save the .bashrc file, then

source .bashrc

http://www.python.org/download/releases/2.6.6/

Now type python –V to check your Python version.

2.2.2 Install the packages
Download NetworkX package at http://networkx.lanl.gov/download.html

Decompress the zip file following the commands below

~$ tar -xcvf networkx-1.3.tar.gz

~$ cd networkx-1.3/

~$ python setup.py install

Similarly, one can install the NumPy package. The download address for NumPy
is http://sourceforge.net/projects/numpy/files/NumPy/.

2.2.3 Run GenRev
Download GenRev from http://bioinfo.mc.vanderbilt.edu/software.html

Unzip the file by command

~$ tar -xzvf GenRev1.0.tar.gz

Enter the GenRev directory, you will find an executive file called GenRev. If this file
does not have executive permission, use the following command to add it.

~$ chmod +x GenRev

To add GenRev to the system path, go to home directory, edit .bashrc

~$ export PATH=$PATH:/where your GenRev is/

Then

~$ source .bashrc

Now, test your GenRev, type

~$ GenRev –h

If installed properly, the help document will be printed out to your screen.

To test run GenRev, go to your GenRev directory, follow the commands below

~$ cd testdata/

http://networkx.lanl.gov/download.html
http://sourceforge.net/projects/numpy/files/NumPy/
http://bioinfo.uth.edu/software.html

~$ GenRev –a steiner –g lesmis.net –t lesmis.terminal

A message will be printed reporting the status of calculation and where the result files are
written to.

2.2.4 For Windows users
Because GenRev is a command line package, one has to call GenRev in the MS-DOS
environment.

To install Python in Windows, download Python Windows installer
at http://www.python.org/download/releases/2.6.6/.

Then, add Python to your system path. Here is a simple tutorial on how to add system
paths in Windows.

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/5445775168.htm

Restart the console. Once the path addition is successful, you can type Python in your
MS-DOS console.

Install NetworkX (http://networkx.lanl.gov/download/networkx/) and NumPy
(http://sourceforge.net/projects/numpy/files/NumPy/).

If both packages are installed successfully, you can import them in your Python
environment.

 >>> import networkx

>>> import numpy

Download GenRev at http://bioinfo.mc.vanderbilt.edu/software.html

Unzip the file to local directory. In MS-DOS, enter the GenRev directory. Run

python GenRev –a steiner –g testdata\lesmis.net –t testdata\lesmis.terminal

Unlike the Linux system, users have to explicitly call GenRev with Python in Windows.
Since it is more convenient to run GenRev in the Linux system, we will assume users are
using Linux in the following document.

2.3 How can I get help?
For helps and feedbacks, send email to Dr. Zhongming
Zhao, zhongming.zhao@vanderbilt.edu.

http://www.python.org/download/releases/2.6.6/
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/5445775168.htm
http://networkx.lanl.gov/download/networkx/
http://sourceforge.net/projects/numpy/files/NumPy/
http://bioinfo.uth.edu/software.html
mailto:zhongming.zhao@vanderbilt.edu

3. Quick start

Here is a quick start example.

3.1 Prepare your input files
Prepare your input files according to the directions in section 6. Basically, all input files
are text, white space delimited files and are easy to prepare. The network file contains
two columns, with each line representing an interaction. In terminal file, each line
represents a node. Additionally, you can find examples in the directory testdata/.
Network files have a .net suffix, node score files have a .score suffix and terminal files
have a .terminal suffix.

3.2 Select algorithms
GenRev has three algorithm options: “steiner”, “heuristic” and “kwalk”. “steiner” refers
to the Klein-Ravi algorithm, which is an approximation algorithm for the node weighted
Steiner tree problem (Klein and Ravi 1995). “heuristic” refers to the heuristic local search
algorithm first proposed by Chuang et al. (Chuang, Lee et al. 2007). “kwalk” refers to the
limited k-walk algorithm proposed by Dupont et al. (Dupont, Callut et al. 2006). It is
important for users to accurately specify one of them. Note that when “heuristic” is
specified, the node score file is a must to run GenRev correctly.

3.3 Run the command line
To view a full list of parameters, type

$ GenRev –h

GenRev needs users to input at least a network file (parameter -g) and a terminal file
(parameter -t). Node score file is also needed for the “heuristic” algorithm.

For demonstration, one can enter the testdata directory. An example command line is:

$ nohup GenRev -a steiner -g lesmis.net -t lesmis.terminal >log.txt 2>&1 &

Report messages or error messages will be written to log.txt.

3.4 See your results
GenRev will automatically create an output directory for result files, unless users specify
a location with the “-o” parameter. When running GenRev, the output directory will be
printed to the screen (standard out) by default. The default directory name will be
formatted as GenRev_analysis01202011_3, which, in this instance, means the third time
running GenRev on 01/20/2011. If a user specified directory already exists, GenRev will
report output error. Output files are formatted for Cytoscape network analysis and
visualization platform (Cline, Smoot et al. 2007). Users can load the network file, node
and edge attribute files to Cytoscape for visualizations.

For details of the result files, see section 6.3.

4. Algorithm

In this section, we will briefly introduce the algorithms GenRev implements. For
different algorithms, we may use the interchangeable terms “terminal” or “seed” to
denote the user input gene lists.

4.1 Klein­Ravi algorithm
In graph theory, the notion of connecting a set of nodes in a graph is the Steiner tree
problem. In the classical Steiner tree problem, the network is typically edge weighted
graphs. In biological studies, genes are often scored instead of their interactions.
Therefore, a variant of the classical Steiner tree problem, the node weighted Steiner tree
problem, fits our questions more naturally. The goal of node weighted Steiner tree
problem is, given each node a weight in graph and a set of terminals, how can we find a
subnetwork linking all terminals while keeping the weight of the subnetwork minimum?
Network score is the sum of scores of its nodes. From the definition, the algorithms for
node weighted Steiner tree problem seeks connections that have a small cost by nature.
However, in most biological studies, genes are often scored proportional to properties of
interest. For example, a larger fold change of gene expression indicates a bigger
probability of real functional relevance to the phenotypic differences. Therefore, a
transformation is needed before we can apply any algorithm for this problem. To this end,
GenRev transforms the user input gene scores internally into node cost by

ݐݏ݋ܿ ݁݊݁ܩ ൌ 1 ඥ݃݁݊݁ ݁ݎ݋ܿݏ⁄

ݏ݁݁ݎݐ ݄݁ݐ ݋ݐ ݏ݁ܿ݊ܽݐݏ݅݀ ݂݋ ݉ݑݏ ݏݑ݈݌ ݁݀݋݊ ݄݁ݐ ݂݋ ݐݏ݋ܿ
ݏ݁݁ݎݐ ݂݋ ݎܾ݁݉ݑ݊

Since the exact solution to this problem is NP-hard, many approximation algorithms were
proposed. In GenRev, we implemented one of them proposed by P. Klein and R. Ravi
(Klein and Ravi 1995). We call it Klein-Ravi algorithm.

The algorithm assumes that the terminals have zero cost for generality. Initially every
terminal is a tree itself. The algorithm uses a greedy strategy to iteratively merge the trees
into larger trees until there is only one tree. In GenRev, we initialize the algorithm in a
slightly different way. Instead of setting each terminal as a tree, we first map terminals to
the network to see if they have any direct interactions. If some terminals can form a
connected graph, then the graph will be used as an initial tree.

The iteration of the algorithm selects a non-tree node and a subset of at least two of the
current trees to minimize the ratio

The minimum ratio defined above is called quotient cost. Distance along a path is the
sum of the node costs in the path but does not include the cost of the end nodes. Once a
node is selected, the shortest path is used to merge node and trees into one.

This algorithm is implemented in the NWSteiner module in GenRev. For more details of
the algorithm, please refer to the original paper (Klein and Ravi 1995).

4.2 Limited K­walks algorithm
The limited K-walks algorithm was proposed by P. Dupont et al. in 2006 (Dupont, Callut
et al. 2006). The algorithm simulates random walks on a graph by the Markov Chain
model. The relevance of an edge and a node in relation to the seed genes is evaluated by
the expected times random walk passes starting from one seed to any of the others. Here,
we briefly introduce the mathematics of this algorithm. A detailed elaboration can be
found in the original paper.

A graph can be described as an adjacency matrix, where ܺ is the connectivity between
vertex ݅ and vertex ݆. Markov chain is used to model a graph, with each node as a state at
time ݐ. ܲ denotes the possibility of transiting from vertex ݅ to vertex ݆ and can be
calculated as ܲ

௜௝

௜௝

௜௝ ൌ ௔೔ೕ

ௗ೔
 where ܽ is the edge score between ݅ and ݆ and ݀ is the degree of

vertex ݅.
௜௝ ௜

௜ܲ௝
௫ ൌ ቐ

1 ݂݅ ݅ א ݅ ݀݊ܽ ሽݔሼ\ܭ ൌ ݆
0 ݂݅ ݅ א ݅ ݀݊ܽ ሽݔሼ\ܭ ് ݆

௜ܲ௝ ݁ݏ݅ݓݎ݄݁ݐ݋

ܲ ൌ ൤ ܳ௫ ܴ௫

0 ܫ
൨௫

ܳ௫ ݊ െ ݇ ൅ 1ሻ ൈ ሺ݊ െ ݇ ൅ 1ሻ ܴ௫

ሺ݊ െ ݇ ൅ 1ሻ ൈ ሺ݇ െ 1ሻ
 matrix.

௫ ሻ௟ ሺ ܳ௫ ሻ௟ሿ௫௜

,ݔ ݅ሻ

,ݔሾ݊ሺܧ ݅ሻሿ ൌ ෍ ܲሾ ௟ܺ ൌ ݅|ܺ଴ ൌ ሿݔ
ஶ

௟ୀ଴

ൌ ෍ሾሺ ܳ௫ ሻ௟ሿ௫௜

ஶ

௟ୀ଴

ൌ ሾܫ െ ܳ௫ ሿ௫௜
ିଵ

ܰ௫ ൌ ሾܫ െ ܳ௫ ሿିଵ

ሺݔ, ݅, ݆ሻ

,ݔሾ݁ሺܧ ݅, ݆ሻሿ ൌ ቐ
௫ܰ௜

௫
௜ܲ௝ ݂݅ ݅ א ௫ܭ\ܸ ,

௜ܰ௜
௫

௜ܲ௝ ݂݅ ݔ ൌ ݅ ܽ݊݀ ݅ א ௫,ܭ

0 ݂݅ ് ݅ ܽ݊݀ ݆ א .ܭ

௠௔௫

If Markov chain has a set of absorbing states (denoted as K, e. g. terminals in GenRev),
and the random walk starts from node x, the modified transition would be

Then the transition matrix is rearranged to

Where denotes the ሺ matrix for transient states, is a
 matrix, for transition probability from transient states to

absorbing states. ܫ is identity

After ݈ steps, the transition matrix is ሺ ܳ , so ሾ defines the probability of
transiting from ݔ to ݅ in ݈ steps.

Let expectation of ݊ሺ is the expected number of times of the transition events from ݔ
to ݅ for any time index ݈, which can be calculated as

 is called fundamental matrix.

The edge passage time ݁ is calculated as

ݔ
If the random walks are limited to a maximal walk length to ܮ , the expected passage
times can be computed as

,ݔሾ݁ሺܧ ݅, ݆ሻ|ܮሿ ൌ ෍
ܲሾ ௟ܺ ൌ ݅, ௟ܺାଵ ൌ ݆, ଴ܺ|ܮ ൌ ሿݔ

ܲ ܺ଴ ൌ |ܮሿሾݔ

௅ିଵ

௟ୀ଴

ܲሾܮ|ܺ଴ ൌ ሿݔ ൌ ෍ ሾሺ ܳ௫ ሻ௅ିଵሺ ܴ௫ ሻሿ௫௥
௥א௄\ሼ௫ሽ

݅, ݆ሻ

ܲሾܺ௅ିଵ ൌ ݅, ܺ௅ ൌ ݆, ଴ܺ|ܮ ൌ ሿݔ ൌ ෍ ሾሺ ܳ௫ ሻ௟ሿ௫௜ሾ ܳ௫ ሿ௜௝ሾሺ ܳ௫ ሻ௅ି௟ିଶሺ ܴ௫ ሻሿ௝௥
௥א௄\ሼ௫ሽ

ܲሾܺ௅ିଵ ൌ ݅, ܺ௅ ൌ ݆, ଴ܺ|ܮ ൌ ሿݔ ൌ ሾሺ ܳ௫ ሻ௅ିଵሿ௫௜ሾሺ ܴ௫ ሻሿ௜௝, ׊௝ א ሽݔሼ\ܭ

௠௔௫

,ݔሾ݁ሺܧ ݅, ݆ሻ|ܮ ൑ ௠௔௫ሿܮ ൌ ෍ ,ݔሾ݁ሺܧ ݅, ݆ሻ|ܮሿ
௅೘ೌೣ

௅ୀଵ

ܵ௡௘௧ ൌ ෍ ௜ܸ

௡௘௧ ௜

௡௘௧ ൈ ሺ1 1 െ ⁄ݎ ሻ

The probability of a walk of length ܮ starting in ݔ is given by

The probability of visiting edge ሺ in such a walk, if ݆ is a transient state, is given by

If ݆ is an absorbing state, then

Thus, the limited mean edge passage time are defined for a maximal walk length ܮ is

At this point, a relevance score is calculated for each edge. A subnetwork is obtained by
keeping only edges with relevance scores above a threshold value ߠ. In GenRev, we
select the maximal relevance score that can lead to a connected subgraph as the threshold.

Parameters pertinent to limited k-walk algorithm is ‘-L’ and ‘-it’, which define the
maximum walk length and how many iterations wanted. By default, GenRev uses L=50
and it=1.

4.3 Heuristic local searching algorithm
The heuristic local searching algorithm is slightly different from the other two algorithms
in that it does not look for paths and genes connecting the input seed genes. Rather, it
expands the seeds according to certain rules, which preferentially add high score nodes to
the seed graph. After convergence, the algorithm will return a subnetwork that represents
densely scored regions in the molecular network. Even though each individual gene in
this region may not be ranked at a very top by score, genes in such a region may
cooperate together and contribute to certain phenotypic changes.

For a set of seeds, the algorithm first generates a vertex induced subgraph, and then it will
be used for expansion iteratively until converged. In each iteration, graph score is defined
as

Where ܵ is the graph score, ܸ is vertex score.

The constraint of the local search is, if the maximal score within the local distance of ݀ to
any node of the current subgraph exceeds ܵ , the node will be added to the

network. Otherwise, the expansion stops. ݎ is score increment rate, For a node with score
 and a subgraph with score ܵ , the score increment rate is defined as ݒ௜ ௡௘௧

ݎ ൌ
௜ݒ

௜ݒ ൅ ܵ௡௘௧

௜ ௡௘௧

ሺ݊ log ݊ ൅ ݊݉ ൅ ݏ݊ log ሻݏ
ሺܮ݉ݏሻ

ሺ݊ݏ ሻܮ

Because ݒ and ܵ are positive values, ݎ has a range of (0, 1).

Shortest path will be used to link the node to networks. By default, the local distance ݀ is
set to 2 and the increment rate ݎ is 0.1. User can change the two parameters by “-d” and
“-r” options when running GenRev.

Note that the network score is defined as the sum of all nodes’ scores. Other scoring
themes are available too in previous reports (Ideker, Ozier et al. 2002; Nacu, Critchley-
Thorne et al. 2007). In GenRev, we select sum method to ensure the convergence of
network expansion because the sum method will let the network scores increase linearly.
With a pre-specified ݎ, the threshold score for including a new node therefore keeps
increasing too. Eventually when the threshold reaches a value that no more nodes can
fulfill, the expansion converges.

4.4 Time complexity and network pruning
Suppose network size (number of edges) is ݉, network order (number of nodes) is ݊, and
the number of seeds is ݏ. According to (Faust, Dupont et al.), time complexity of the
Klein-Ravi algorithm is ߠ ଶ ଷ . For limited k-walk algorithm,
time complexity is ߠ where ܮ is the maximum walk length. If the network is dense,
time complexity can reach the upper bound ߠ ଶ . For big networks such as the
human protein interaction network (more than 10,000 nodes from the current PINA
version), the run time can be very long.

To reduce the computation time, an effective approach is to prune the large networks to
smaller networks. In GenRev, we introduce a parameter called “pruning factor”. The
ground for this operation is that gene functional distances are negatively correlated with
their network distances (Sharan, Ulitsky et al. 2007). In other words, if two genes have a
long distance in the network, even though they are connected by a path, their functional
associations might be weak. In our application, we aim to find functional associated
genes with the terminal genes. Following the above theory, if genes are “too far” from
these terminals, they might be less informative in connecting the terminals, even if they
are indispensable in these connections. Therefore, it is plausible to prune these nodes
from the large network to generate a more compact but yet informative network. Such a
network pruning will reduce the search space on the graph without loss of much
information.

 To illustrate this concept, we designed a small graph, as is shown in figure 1. Node a, h,
g and q are terminals. If we prune all nodes that have shortest distances larger than 1 with
the terminals (parameter s=1 in GenRev), that is, only the direct interactors of the
terminals can be kept after pruning, then node m and t will be pruned and path b-d will be
found to connect the terminals. If no pruning is performed, path b-d is still the path to
connect these terminals. That means, this network pruning setting will not affect the
searching results, given the maximal distance among these terminals is 3. In other words,
setting pruning factor s=1 in GenRev will allow the connection of terminals with

maximal distance 3. In molecular networks, functional relationships of genes having a
distance more than 3 are assumed to be weak.

If there is another node c between b and d, then this setting will prune c and consequently
split the terminals into two separate networks, e.g. {a, b, h} and {g, d, q}. Otherwise if no
pruning is conducted, path b-c-d will be identified and the distance between {a, h} and {g,
q} will be 4. If we put the terminals into the network context, it is apparent that {a, b, h}
and {g, d, q} belong to different modules. While c is an obvious bridge for the two
modules, exclusion of c by pruning will nevertheless allow the re-discovery of the two
modules by identifying b and d for terminal set {a, h} and {g, q} respectively.

By default GenRev sets the pruning factor to 1 to include the paths within shortest path
length 3 among the terminals. But considering the vast possibilities of the user defined
networks, GenRev allows users to specify this parameter in the command line by
parameter s.

To evaluate the efficiency of network pruning, we randomly selected different sets of
terminals from the human protein-protein interaction network and applied two pruning
factors. The network was downloaded from Protein Interaction Network Analysis
platform (PINA, http://csbi.ltdk.helsinki.fi/pina/home.do) (Wu, Vallenius et al. 2009) as
of 03/04/2010. It contains 10661 genes and 52869 non-loop edges (The network is
available in the GenRev testdata directory with name “ppi_name.txt”). For each seed set
size, random sampling was performed 100 times. The results are shown in table 1. Setting
s=1 will prune most of the nodes for different sets of terminals. For example, for a set of
200 terminals, this process will remove 84.75% nodes, and the average size after pruning
is 1626. Loosing the pruning factor will reduce the pruning ability dramatically, from
84.75% to 23.29% for the 200 terminals.

Figure 1. A small graph to demonstrate network
pruning.

 Network pruning percentage

 s=1 s=2

seeds number order stdv prune% order stdv prune%

50 504 100 95.27% 5760 438 45.97%

100 913 149 91.44% 7040 283 33.96%

200 1626 173 84.75% 8178 156 23.29%

500 3169 180 70.27% 9253 68 13.21%

Table 1. Network pruning efficiency in human
protein interaction network.

We then tested if the network pruning will change the results significantly. Similarly we
used the human protein-protein interaction network (Wu, Vallenius et al. 2009). For
terminals, we used a gene expression data set (Wurmbach, Chen et al. 2007). Briefly,
genes were ordered by their fold changes, and top genes were used as terminals. For
details on the microarray data analysis, please see section 7.2. We tested top 50, 100 and
200 genes as seeds. Network pruning was performed with s=1 and s=2. To evaluate
consistency, we calculated the resulting subnetwork overlaps for these two pruning
factors using

݋ ൌ
ܣ ת ܤ

݉݅݊ሺܣ, ሻܤ

Where A and B are vertex sets. The results are shown in figure 2. For both algorithms,
the result subnetworks have high consistency, ranging in overlap from 67%-89%. We
also calculated the overlaps of nodes with more than 4 interactions. The trends are similar
(figure 2).

Figure 2. Comparison of subnetworks for different pruning
factor s=1 and s=2 with different algorithm.

One concern is that network pruning may disperse the terminals into disjoint parts in the
result subnetworks because many nodes would be removed while they might be
indispensible to connect the terminals. To address this concern, we calculated the
percentage of the giant components to the result subnetworks (table 2). In most cases,
giant components take over 90% of the whole result network. The pruning factor setting
seems not impact this value much. In other words, even the strongest pruning will allow
the connection of the vast majority of the terminals. This is expected because many of
deregulated genes are hypothesized to be under co-regulations of some transcriptional
programs or other mechanisms. These functional associations predispose them within
close neighborhoods in networks.

algorithm terminal s1 s2

Klein‐Ravi 50 94.55% 94.74%
Klein‐Ravi 100 95.33% 96.46%
Klein‐Ravi 200 97.60% 98.23%
kwalk 50 88.68% 57.41%
kwalk 100 96.06% 93.57%
kwalk 200 97.83% 94.31%

Table 2. The ratio of connected nodes in the
result subnetworks for different pruning factor.

By network pruning, software run time is greatly improved (table 3). The test was done in
a Linux server with 2.6 GHz CPU and 16 Gb memory.

 Klein‐Ravi kWalk

terminals s=1 s=2 s=1 s=2
top50 7 sec 6 min 25 sec 2.8 h
top100 68 sec 38 min 8 min 17.6 h
top200 8 min 116 min 42 min 53.4 h

Table 3. Run time for algorithms and
pruning factors.

Since the heuristic local search algorithm is very fast, network pruning is not applicable
to it in GenRev.

4.5 Markov Clustering Algorithm (MCL)
By default, GenRev applies MCL algorithm (http://www.micans.org/mcl/) (Dongen
2000) to the result subnetworks to identify modules if the subnetworks are not too big. A
modular view of the subnetwork enables people to quickly inspect the results and
discover complexes or pathways revealed by the network. Modularity, a measurement of
how good the division is by MCL, is provided. Though originally created to quantify
graph clustering, it is able to show how modular a graph is. It ranges from -1 to 1. A
value of 0 indicates that the modular structure is no longer than would be expected by
chance. Positive values indicate the modularity is larger than random.

http://www.micans.org/mcl/

The MCL algorithm iterates two operations called expansion and inflation, respectively.
In GenRev, we implemented a prototype of this algorithm and restricted the input
network order (number of nodes) to be less than 500. Otherwise if the network order is
larger, this analysis procedure will be omitted. In GenRev, the MCL inflation factor is set
to 2.

For more information about MCL, please visit http://www.micans.org/mcl/ and the
original paper.

4.6 Gene ranking
To help biologists prioritize genes, GenRev provides gene rankings by default. Genes in
the resulting subnetwork are ranked by three measurements degree, betweenness and
score.

While the grounds for ranking genes by score are obvious, ranking by degree and
betweenness serves a way to prioritize genes by their topological importance in the
network. Previous studies reported that hub genes (high degree) and bottleneck genes
(high betweenness) in gene networks are more important for cell survivals (Jeong, Mason
et al. 2001; He and Zhang 2006; Yu, Kim et al. 2007). It's important to note that the
ranking only reflects the gene's position in the subnetwork rather than the global network.
This is one of GenRev's initiatives that highlight genes in a context dependent manner.
Top 20 genes are returned for each measurement in GenRev.

5. Input, output and parameters

GenRev requires users to input a network file, a set of terminals and optionally user can
input a gene score file.

5.1 Input files

5.1.1 Network file
Network file is a white space (tab or space) delimited file. The file should have at most
three columns, where the first two columns are genes, and the optional third column is
edge score. Lines with “#” as start are considered annotations and will be omitted when
loading networks. A simple illustration is shown below.

#GeneA GeneB Score(optional)

a b 2
a c 1.9
a d 0.5
a e 3.4
b c 4.1
b d 0.5
b e 3.6
c d 1.5

http://www.micans.org/mcl/

If edge scores are present, GenRev requires them to be positive values. If negative or zero
scores are encountered, GenRev will report an I/O error and exit. If edge scores are not
specified, GenRev will assign 1 to the edge. In Klein-Ravi algorithm and heuristic local
search algorithm, edge scores are not used since both algorithms use only node scores.
Even if the user inputs edge scores in a network file, they will be coerced to 1 for the
algorithms.

5.1.2 Node information file
Node file gives node scores to GenRev. If no node file is given in the command line,
GenRev will consider each node to be of equal weight in calculation. Node file is a must
for the heuristic local search algorithm. For k-Walk algorithm, GenRev only considers
edge scores at the present version.

The node file is a two column, white space delimited file. The first column is gene names,
and the second column is gene scores. GenRev reads the node information from this file
and then maps scores to nodes in the network. If the node file contains only a subset of
nodes in the network, then those nodes will be used to extract a node induced subnetwork,
which is used as global network. In other words, nodes of the actual global network
used in calculation come from an intersection of the input network and nodes
provided in the node file.
Below is a simple example how the file looks like.

5.1.3 Terminal file
Terminal file provides the terminal genes for GenRev, and, thus, it is indispensable in the
command line. It has one column with each line representing a gene name.

5.2 Output files
At the current version, GenRev will automatically output all result files to a local
directory with a name pattern “GenRev_analysis+day+month+year_number,” unless the
user has specified an output directory using parameter “-o” If the specified output
directory has already existed, I/O error will be reported by GenRev.

By default GenRev generates 14 files. The following table gives a summary of these files.

File Name Annotation

summary.txt Overview of the current run
terminals.txt Terminals used in calculation
global_net.sif SIF format for global network
global_edge_cat.eda Edge categorization for global network
global_edge_score.eda Edge scores for global network

#Gene Score

a 1.0
c 5.0
b 2.0
e 5.0
d 9.0

global_node_cat.noa Node categorization for global network
global_node_score.noa Node scores for global network
sub_net.sif SIF format for subnetwork
sub_edge_cat.eda Edge categorization for subnetwork
sub_edge_score.eda Edge scores for subnetwork
sub_node_cat.noa Node categorization for subnetwork
sub_node_score.noa Node scores for subnetwork
modules.txt Modules for subnetwork by MCL
gene_rank.txt Gene ranking for subnetwork

The summary.txt file gives a summary of the current GenRev calculation. The module.txt
and gene_rank.txt files give clustering analysis and gene ranking analysis result. if ‘-cl’ is
set to FALSE, graph clustering analysis will be omitted.

GenRev does not provide network visualization. Instead, it generates SIF format files so
users can use the Cystoscape software (Cline, Smoot et al. 2007) to visualize the
networks. GenRev also generates node and edge attribution files (.noa and .eda files),
thus allowing users to load these files into Cytoscape and set different visual properties
for the attributes. Files with ‘global’ prefix are global network related files used in the
calculation, and files with ‘sub’ prefix are the extracted subnetwork related files.

Under several circumstances, GenRev will automatically adjust the input data for the
selected algorithm. For instance, even though each edge has different scores in the large
network, GenRev will coerce the edge scores to equal when running the Klein-Ravi
Steiner algorithm. In other words, the “real” networks in computations may be different
with the user input networks. To help users check with their data, the “global” files in the
result directory provide the “real” networks and their attributes. Meanwhile, nodes in
large network are categorized into “terminal”, “linker” and “other”. Similarly edges are
categorized into “subnetwork” and “other”. Users can use these attributes to visualize
subnetworks in the large network.

In subnetworks, edges are categorized into “terminal_terminal”, “terminal_linker” and
“linker_linker” to describe edges with different sources of end nodes. Nodes are
categorized into “terminal” and “linker”.

If MCL was called, modules.txt file would be present in the result directory. This is a
result file for graph clustering analysis to the subnetwork, not the large network. Each
line denotes a module, Modularity is computed according to its definition (Newman
2004).

5.3 Parameters
To view GenRev parameters, type ‘GenRev -help’ in command line.

All parameters now in GenRev are listed below.
‐h Show all parameters.

‐v Show the current version of GenRev.

‐a Algorithm selection. Three algorithms are available, please specify one of

 'heuristic', 'steiner', 'kwalk' for your selection. Note there are some

 algorithm specific parameters.

‐s The pruning factor. Default is 1. Set to F if no network pruning

 is wanted. This factor defines how GenRev reduces the global network to a

 more compact, but yet informative network.

‐g The network file path. Network file is space or tab delimited. The first

 two columns are vertices, the third column is edge score. Larger score

 indicate more close relations. This edge column is optional. If omitted,

 all edges are thought to have equal scores of 1.

‐n The node score file. Node file is space or tab delimited. The first column

 is node name, and the second column is node score. Node scores should be

 positive. This file is optional. If omitted, all nodes are thought to have

 equal scores of 1.

‐t The terminal nodes file. In GenRev, the input genes for subnetwork

 extraction are called terminals. This file is of single column, with each

 line is a node name.

‐d Set the search radius in heuristic local search algorithm. Only valid when

 algorithm parameter set to 'heuristic'. Default value is 2. It should set to

 positive integers.

‐r Set the network score increment rate. Default is 0.1, range is (0,1). Only

 valid for heuristic algorithm.

‐L Set the maximal walk length in limited k‐walk algorithm. Default is 50. It

 should set to positive integers.

‐it Set the iteration times for k‐walk algorithm.Default is 1.

‐cl If MCL clustering will be applied. Default if True. Alternative option is False.

 If result network have more than 500 nodes, ‐cl is automatically set to F.

‐o The output directory for the analysis results.If omitted, GenRev will

 automatically create output directory in the current location.

In the following, we will elaborate on some algorithm specific parameters.

-s

The pruning factor. This parameter defines if and how the network pruning is done.
Assuming it is set to ݒ, then the ݒ orders of the seeds (nodes with shortest distances less
or equal to ݒ to the seeds) are kept while others are pruned to reduce the search space on
the graph. Default s is 1. If no network pruning is needed, set s to False. Note that
without network pruning, the runtime may be very long for large networks. See section 4
for more details.

-d

This parameter is heuristic local search algorithm specific and defines the local search
radius. If d=1, then the direct neighbors of the seed graph will be examined. Similarly, if
d=2, the neighbors of order 2 will be examined. Though in theory users can set d to
whatever values, we recommend setting d at no more than 2, since, if two genes have a
relation intermediated by the other two genes, their relations might be weak.

-r

This is a score increment rate defined in heuristic local search algorithm, with the
equation shown as

ݎ ൌ ௜ܸ

௜ܸ ൅ ௚ܵ

௜ ௚

௚

Where ܸ is the maximum node score within the d distance, ܵ is the current network
score. If ௜ܸ is far larger than ܵ gets closer to 0. By ݎ ,is getting close to 1. Oppositely ݎ ,
default, GenRev sets ݎ to 0.1, but users can change it by “-r” parameter.

-L

This parameter defines the maximum walk length in the limited k-walk algorithm. The
default value is 50.

-it

It defines how many iterations GenRev will run the limited k-walk algorithm. By default,
GenRev will run it 1 time (iteration=1), but if this parameter is set to other values, e.g. 2,
GenRev will iteratively run this algorithm by using the nodes in the resulting subnetwork
from the previous run as terminals.

6. Toy network models

In this part, we will demonstrate the three algorithm implementations in GenRev with
some toy models.

6.1 Klein­Ravi algorithm.
First, we will use a simple graph to show how the algorithm works. In the graph shown in
figure 1, red nodes are terminals, and blue nodes are so called Steiner nodes, which
connect the terminals. We also call these nodes “linkers”. Grey nodes are not included in
the result subnetwork. We keep them here for demonstration purpose only. Each node has
a positive score value. GenRev first transforms these scores to node weights, as shown in
the following table (also read section 4.1).

Node Score Weight

a 1.0 1.0
d 1.5 0.8

c 0.5 1.4
g 2.0 0.7
… … …

Then, terminals are mapped to the global graph. In this toy, two subgraphs (trees) are
acquired, namely the g-e-f subgraph (tree 1) and b subgraph (tree 2). For the remaining a,
c, d, GenRev calculates a quotient cost for each of them, as shown in the following table.

Node quotient cost path to tree 1 path to tree 2

a 1.2 a‐c‐g a‐b
c 1.2 c‐g c‐d‐b / c‐a‐b
d 1.1 d‐c‐g d‐b

Node d is selected to merge the two trees since it has the minimum quotient cost. Paths
between d and the two trees are used, generating a subgraph consisting of b-d-c-e-g-f. It
is very important to note that node a and d have very similar topological positions in the
graph, but their score differences drive GenRev to select d eventually.

Figure 1. A toy graph to illustrate the implementation of Klein‐Ravi algorithm in
GenRev. Rectangular red nodes are terminals, circular blue nodes are Steiner nodes
(linkers) which connect the terminals. Node size is proportional to its score.

To further illustrate the use of this algorithm, we applied it to another network, the co-
appearance network of characters in the novel of Les Miserables (Knuth 1993). For
simplicity, all nodes in the network are assumed as equal scores. We randomly selected
12 characters as terminal nodes. The extracted subnetwork is shown in figure 2. It clearly
shows a hub node Valjean, who is a main character in the novel. Some other main
characters are also identified, such as Fantine and Myriel.

6.2 Limited k­walk algorithm
We use a toy graph (Figure 3), a variant network of figure 7 in(Dupont, Callut et al.
2006), to demonstrate limited k-walk algorithm. Like other examples, red rectangular
nodes are terminals, blue nodes are linkers and grey nodes are not present in the resulting
network, but appear for demonstration purposes here. An important characteristic of this
toy graph is that it has two obvious cliques. Our terminal set contains 3 nodes in the right
clique. By random walk, GenRev successfully connects the other 2 nodes to the terminal
set. By contrast, there is only one node left in the left clique, and the small number of this
seed node is not able to bring enough information for GenRev to identify its other clique
members.

Figure 2.Use Steiner tree algorithm to extract the subnetwork from character
co‐appearance network in the novel Les Miserables. Red nodes are randomly
selected terminals, and blue are linkers.

Figure 3.Relevance subnetwork by limited k‐walk algorithm. Red rectangular
nodes are terminals, blue nodes are linkers, grey nodes are present just for
illustration.

It is interesting to see the differences between the Klein-Ravi algorithm and limited k-
walk algorithm. While k-walks can pick up other clique members (f and h), the Klein-
Ravi algorithm can only find f. These differences stem from the Klein-Ravi algorithm
seeking to find the minimum number of nodes to connect terminals, while k-walk seeks
to find the most relevant nodes in the information flow from terminal to terminal. It is
very difficult to compare the superiority of the two algorithms since both have
advantages and disadvantages. The Klein-Ravi algorithm can highlight the most
important hubs, while missing some important information especially regarding the
modular structure of biological networks. The limited k-walk algorithm, on the other
hand, may result in very comprehensive networks, which make the interpretation
challenging.

To give one more example of this algorithm, we run the same terminals to the Les
Miserables character network using the same terminals. Result network is shown in
figure 4.

Figure 4. Applying limited k‐walk to the character co‐appearance network.
Red rectangular nodes are terminals; blue nodes are linkers identified by
GenRev.

Some apparent modular structures are present, which are not seen in the Klein-Ravi
algorithm result. In fact, the modularity of this resulting network is 0.57. The main
character, Valjean, is found and heighted as the biggest hub. Other main characters, like
Fantine and Myriel, are also present.

6.3 Heuristic local search algorithm
To illustrate the heuristic local search in GenRev, we designed a small toy graph,

Figure 5. A toy graph shows how the heuristic local search algorithm works. Numbers
in node labels are node scores. Red rectangular nodes are seeds, and blue circular
nodes are incorporated into the resulting subnetwork by seed expansions.
Parameters used in A is d=1, r=0.1, and in B is d=2, r=0.1.

As is shown in figure 5, red rectangles represent seeds, and numbers in node labels
denote scores. With parameters set to d=1, r=0.1 in figure 5A, the seed graph G(V={e,m})
initially has a score 5+8=13, and then finds its d=1 order of neighbors. The maximum
score in neighbors is 4 for node g, fulfilling the expansion criterion that ௜ܵ ௚

൒ 13 ൈ ሺ0.1/0.9ሻ , node l is added, too, at which point
൐ ܵ ൈ

ሺݎ 1 െ ⁄ݎ ሻ, namely 4 . Similarly

no addition meets the ݎ restriction. If the searching radius is set to d=2, the expansion
will be more aggressive, resulting in a much bigger network (figure 5B).

7. Case studies
7.1 Applying GenRev to psychiatric disorders
We had applied an early version of GenRev to psychiatric disorder studies. In a
schizophrenia study, we used the Klein-Ravi algorithm to extract a schizophrenia
network, and subsequently compared this network to the cancer specific network (Sun,
Jia et al.). We showed that the schizophrenia genes are weakly connected and distribute
peripherally in the network. For details, please refer to our original paper (Sun, Jia et al.).

In another study, we used a set of genes localized in a copy number variation region and a
set of genes annotated to be related with epilepsy in HuGE as terminals, and aimed to
construct epilepsy specific subnetworks (Jia, Ewers J et al. 2011). The copy number
variation data comes from a recent study (Heinzen, Radtke et al.). The epilepsy related
genes from HuGE were determined by a page search with key term “epilepsy”. Using
these two sets of terminals, we constructed two subnetworks. By comparing the two
networks, we identified 20 genes in common, and then we assigned them high priority
candidates for epilepsy. We then used microarray data to evaluate their expression
patterns. Two of them, CHRNA1 and GABRA1, are differentially expressed genes. We
project that they can be used as biomarkers, or potentially therapeutic targets. For details,
please refer to our paper (Jia, Ewers J et al. 2011).

7.2 Applying GenRev to a microarray data set
We analyzed a microarray data set to illustrate GenRev. The data set was downloaded
from NCBI Gene Expression Omnibus (GEO) database (Barrett, Troup et al.). The
authors used Affymetrix Human Genome U133 plus 2.0 arrays to characterize the stage
differences of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC)
(Wurmbach, Chen et al. 2007). Specifically their findings provided a comprehensive
molecular portrait of genomic changes in progressive HCV-related HCC.

To re-analyze this data, we first categorized the samples into precancerous and cancerous
groups. Precancerous samples consist of normal, cirrhosis and dysplastic liver samples,
and cancerous samples consist of early and advanced stage HCC samples. We excluded 3
samples from cirrhotic liver tissue of patients without HCC. Since this data set had been
already normalized when it was submitted to GEO, no more normalization was
performed in our analysis. For genes with more than one probe set in the array platform,
we used the strongest signal in each sample to collapse those probe sets.

To run GenRev, we calculated expression fold changes for each gene between the two
groups at the logarithm scale. Negative values were transformed to their absolute values.
Genes were then ranked decreasingly. Protein interaction network from PINA (Wu,
Vallenius et al. 2009) was used as the large network. As of 03/04/2010, the PINA
platform contained 10,661 unique nodes and 52,869 edges. Each node represents a gene
product (i.e., protein encoded by the gene) and each edge represents an interaction
between the two linked nodes.

The top 200 genes were used as terminals. Three algorithms were run respectively.
Ranking genes by their degrees revealed that a cell cycle regulator, CDK1, was the
largest hub protein (with most interactions) in all resulting networks. Previous studies
have reported that CDK1 is a very important component in the HCV core protein
mediated deregulation in HCC (Spaziani, Alisi et al. 2006). A pilot study reported that
inhibition of CDK1 could decrease tumor growth and is a potential therapy for
hepatoblastoma tumors and some other tumors (Goga, Yang et al. 2007). In this example,
GenRev prioritized it as hub protein in networks. In the microarray data set, this gene
ranked 66th by fold change. Using gene expression alone, this gene may be missed. But
GenRev shows that the networks bring additional information and eventually lead to its
identification.

Many other genes were also prioritized, such as UBB, TP53, GRB2 and others. It is not
surprising to see TP53 in the lists because it is widely recognized as a tumor gene (Caron
de Fromentel and Soussi 1992). UBB is known to participate in the protein degradation.
Recently it is reported to be a regulatory gene in cancer (Wu, Tian et al.). GRB2 is also
observed relevant with HCC (Yoon, Jeong et al. 2001).

Please visit http://bioinfo.mc.vanderbilt.edu/GenRev.html for complete results.

8. Conclusions and remarks

A key task in biomedical informatics research is to understand the underpinning
mechanisms of diseases and identify causal genes. While many technologies produce lists
of genes that show changes at certain layers of the cellular system, interpreting these lists
is challenging. The large scale networks shed lights on this task because we can
understand these gene lists in network context. GenRev was developed under this
premise. It allows users to input a list of genes as seeds to extract relevance networks,
which may then be used to study the functional associations among those seed genes and
prioritize specific genes from their topological structures and scores.

By its three algorithms, GenRev guarantees to generate gene relevance networks. The
next step would be how to interpret the networks and give insights into their functions. In
the current version, GenRev provides clustering analysis and gene ranking analysis.
However, we are aware that collaborative efforts are necessary to the successful creation
of a high quality tool. We look forward to feedbacks from GenRev users, and hopefully
we will make GenRev better and better according to these feedbacks

9. Notes

Part of GenRev (the node weighted Steiner tree algorithm) was implemented while Dr. S.
Zheng was a Ph.D. student in the Shanghai Institute for Biological Sciences under the
mentorship of Dr. Yixue Li and Dr. Pei Hao. Zhao lab members, particularly Drs.

Jingchun Sun and Peilin Jia provided many helpful discussions and suggestions for the
development of GenRev.

10. References

Aric, A. H., A. S. Daniel, et al. (2008). "Exploring network structure, dynamics, and
function using NetworkX." Proceedings of the 7th Python in Science Conference
(SciPy2008): 11-15.

Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium." Nat Genet 25(1): 25-9.

Barabasi, A. L. and R. Albert (1999). "Emergence of scaling in random
networks." Science 286(5439): 509-12.

Barrett, T., D. B. Troup, et al. "NCBI GEO: archive for functional genomics data sets--10
years on." Nucleic Acids Res 39(Database issue): D1005-10.

Beissbarth, T. and T. P. Speed (2004). "GOstat: find statistically overrepresented Gene
Ontologies within a group of genes." Bioinformatics 20(9): 1464-5.

Caron de Fromentel, C. and T. Soussi (1992). "TP53 tumor suppressor gene: a model for
investigating human mutagenesis." Genes Chromosomes Cancer 4(1): 1-15.

Chuang, H. Y., E. Lee, et al. (2007). "Network-based classification of breast cancer
metastasis." Mol Syst Biol 3: 140.

Cline, M. S., M. Smoot, et al. (2007). "Integration of biological networks and gene
expression data using Cytoscape." Nat Protoc 2(10): 2366-82.

Dongen, S. v. (2000). "Graph clustering by flow simulation." PhD thesis, University of
Utrecht, May 2000.

Dupont, P., J. Callut, et al. (2006). "Relevant subgraph extraction from random walks in a
graph." Research report UCL/FSA/INGI 2006-07.

Faust, K., P. Dupont, et al. "Pathway discovery in metabolic networks by subgraph
extraction." Bioinformatics 26(9): 1211-8.

Goga, A., D. Yang, et al. (2007). "Inhibition of CDK1 as a potential therapy for tumors
over-expressing MYC." Nat Med 13(7): 820-7.

He, X. and J. Zhang (2006). "Why do hubs tend to be essential in protein
networks?" PLoS Genet 2(6): e88.

Heinzen, E. L., R. A. Radtke, et al. "Rare deletions at 16p13.11 predispose to a diverse
spectrum of sporadic epilepsy syndromes." Am J Hum Genet 86(5): 707-18.

Ideker, T., O. Ozier, et al. (2002). "Discovering regulatory and signalling circuits in
molecular interaction networks." Bioinformatics 18 Suppl 1: S233-40.

Jeong, H., S. P. Mason, et al. (2001). "Lethality and centrality in protein
networks." Nature 411(6833): 41-2.

Jia, P., M. Ewers J, et al. (2011). "Prioritization of Epilepsy Associated Candidate Genes
by Convergent Analysis." PLoS One In press.

Kanehisa, M., S. Goto, et al. "KEGG for representation and analysis of molecular
networks involving diseases and drugs." Nucleic Acids Res 38(Database issue):
D355-60.

Klein, P. and R. Ravi (1995). "A nearly best-possible approximation algorithm for node-
weighted Steiner trees." Journal of Algorithms 19: 104-115.

Knuth, D. E. (1993). "The Stanford GraphBase: A Platform for Combinatorial
Computing." Addison-Wesley, Reading, MA.

Nacu, S., R. Critchley-Thorne, et al. (2007). "Gene expression network analysis and
applications to immunology." Bioinformatics 23(7): 850-8.

Newman, M. E. (2004). "Fast algorithm for detecting community structure in
networks." Phys Rev E Stat Nonlin Soft Matter Phys 69(6 Pt 2): 066133.

Scott, M. S., T. Perkins, et al. (2005). "Identifying regulatory subnetworks for a set of
genes." Mol Cell Proteomics 4(5): 683-92.

Sharan, R., I. Ulitsky, et al. (2007). "Network-based prediction of protein function." Mol
Syst Biol 3: 88.

Spaziani, A., A. Alisi, et al. (2006). "Role of p38 MAPK and RNA-dependent protein
kinase (PKR) in hepatitis C virus core-dependent nuclear delocalization of cyclin
B1." J Biol Chem 281(16): 10983-9.

Spirin, V. and L. A. Mirny (2003). "Protein complexes and functional modules in
molecular networks." Proc Natl Acad Sci U S A 100(21): 12123-8.

Subramanian, A., P. Tamayo, et al. (2005). "Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles." Proc Natl
Acad Sci U S A 102(43): 15545-50.

Sun, J., P. Jia, et al. "Schizophrenia gene networks and pathways and their applications
for novel candidate gene selection." PLoS One 5(6): e11351.

Wu, J., T. Vallenius, et al. (2009). "Integrated network analysis platform for protein-
protein interactions." Nat Methods 6(1): 75-7.

Wu, P., Y. Tian, et al. "Ubiquitin B: an essential mediator of trichostatin A-induced
tumor-selective killing in human cancer cells." Cell Death Differ 17(1): 109-18.

Wurmbach, E., Y. B. Chen, et al. (2007). "Genome-wide molecular profiles of HCV-
induced dysplasia and hepatocellular carcinoma." Hepatology 45(4): 938-47.

Yoon, S. Y., M. J. Jeong, et al. (2001). "Grb2 dominantly associates with dynamin II in
human hepatocellular carcinoma HepG2 cells." J Cell Biochem 84(1): 150-5.

Yu, H., P. M. Kim, et al. (2007). "The importance of bottlenecks in protein networks:
correlation with gene essentiality and expression dynamics." PLoS Comput Biol
3(4): e59.

Zhang, B., S. Kirov, et al. (2005). "WebGestalt: an integrated system for exploring gene
sets in various biological contexts." Nucleic Acids Res 33(Web Server issue):
W741-8.

Zheng, S., J. Sheng, et al. (2008). "MPSQ: a web tool for protein-state
searching." Bioinformatics 24(20): 2412-3.

	Contents
	1. Introduction
	2. Preliminaries
	2.1 Citing GenRev
	2.2 Installation
	2.2.1 Install Python language
	2.2.2 Install the packages
	2.2.3 Run GenRev
	2.2.4 For Windows users

	2.3 How can I get help?

	3. Quick start
	3.1 Prepare your input files
	3.2 Select algorithms
	3.3 Run the command line
	3.4 See your results

	4. Algorithm
	4.1 Klein-Ravi algorithm
	4.2 Limited K-walks algorithm
	4.3 Heuristic local searching algorithm
	4.4 Time complexity and network pruning
	4.5 Markov Clustering Algorithm (MCL)
	4.6 Gene ranking

	5. Input, output and parameters
	5.1 Input files
	5.1.1 Network file
	5.1.2 Node information file
	5.1.3 Terminal file

	5.2 Output files
	5.3 Parameters

	6. Toy network models
	6.1 Klein-Ravi algorithm.
	6.2 Limited k-walk algorithm

	7. Case studies
	7.1 Applying GenRev to psychiatric disorders
	7.2 Applying GenRev to a microarray data set

	8. Conclusions and remarks
	9. Notes
	10. References

