1Arch. Gen. Psychiatry 2000 Nov 57: 1061-9
PMID11074872
TitleDecrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.
AbstractReelin (RELN) is a glycoprotein secreted preferentially by cortical gamma-aminobutyric acid-ergic (GABAergic) interneurons (layers I and II) that binds to integrin receptors located on dendritic spines of pyramidal neurons or on GABAergic interneurons of layers III through V expressing the disabled-1 gene product (DAB1), a cytosolic adaptor protein that mediates RELN action. To replicate earlier findings that RELN and glutamic acid decarboxylase (GAD)(67), but not DAB1 expression, are down-regulated in schizophrenic brains, and to verify whether other psychiatric disorders express similar deficits, we analyzed, blind, an entirely new cohort of 60 postmortem brains, including equal numbers of patients matched for schizophrenia, unipolar depression, and bipolar disorder with nonpsychiatric subjects.
Reelin, GAD(65), GAD(67), DAB1, and neuron-specific-enolase messenger RNAs (mRNAs) and respective proteins were measured with quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) or Western blot analyses. Reelin-positive neurons were identified by immunohistochemistry using a monoclonal antibody.
Prefrontal cortex and cerebellar expression of RELN mRNA, GAD(67) protein and mRNA, and prefrontal cortex RELN-positive cells was significantly decreased by 30% to 50% in patients with schizophrenia or bipolar disorder with psychosis, but not in those with unipolar depression without psychosis when compared with nonpsychiatric subjects. Group differences were absent for DAB1,GAD(65) and neuron-specific-enolase expression implying that RELN and GAD(67) down-regulations were unrelated to neuronal damage. Reelin and GAD(67) were also unrelated to postmortem intervals, dose, duration, or presence of antipsychotic medication.
The selective down-regulation of RELN and GAD(67) in prefrontal cortex of patients with schizophrenia and bipolar disorder who have psychosis is consistent with the hypothesis that these parameters are vulnerability factors in psychosis; this plus the loss of the correlation between these 2 parameters that exists in nonpsychotic subjects support the hypothesis that these changes may be liability factors underlying psychosis.
SCZ Keywordsschizophrenia, schizophrenic
2Arch. Gen. Psychiatry 2000 Nov 57: 1061-9
PMID11074872
TitleDecrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.
AbstractReelin (RELN) is a glycoprotein secreted preferentially by cortical gamma-aminobutyric acid-ergic (GABAergic) interneurons (layers I and II) that binds to integrin receptors located on dendritic spines of pyramidal neurons or on GABAergic interneurons of layers III through V expressing the disabled-1 gene product (DAB1), a cytosolic adaptor protein that mediates RELN action. To replicate earlier findings that RELN and glutamic acid decarboxylase (GAD)(67), but not DAB1 expression, are down-regulated in schizophrenic brains, and to verify whether other psychiatric disorders express similar deficits, we analyzed, blind, an entirely new cohort of 60 postmortem brains, including equal numbers of patients matched for schizophrenia, unipolar depression, and bipolar disorder with nonpsychiatric subjects.
Reelin, GAD(65), GAD(67), DAB1, and neuron-specific-enolase messenger RNAs (mRNAs) and respective proteins were measured with quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) or Western blot analyses. Reelin-positive neurons were identified by immunohistochemistry using a monoclonal antibody.
Prefrontal cortex and cerebellar expression of RELN mRNA, GAD(67) protein and mRNA, and prefrontal cortex RELN-positive cells was significantly decreased by 30% to 50% in patients with schizophrenia or bipolar disorder with psychosis, but not in those with unipolar depression without psychosis when compared with nonpsychiatric subjects. Group differences were absent for DAB1,GAD(65) and neuron-specific-enolase expression implying that RELN and GAD(67) down-regulations were unrelated to neuronal damage. Reelin and GAD(67) were also unrelated to postmortem intervals, dose, duration, or presence of antipsychotic medication.
The selective down-regulation of RELN and GAD(67) in prefrontal cortex of patients with schizophrenia and bipolar disorder who have psychosis is consistent with the hypothesis that these parameters are vulnerability factors in psychosis; this plus the loss of the correlation between these 2 parameters that exists in nonpsychotic subjects support the hypothesis that these changes may be liability factors underlying psychosis.
SCZ Keywordsschizophrenia, schizophrenic
3Neurochem. Res. 2000 Oct 25: 1207-18
PMID11059795
TitleNew neurochemical markers for psychosis: a working hypothesis of their operation.
AbstractReelin (Reln) is expressed in specific GABAergic neurons in layer I and II of neocortex, and is secreted into the extracellular matrix where it surrounds dendrites, spines and neurite arborizations, and binds to integrin receptors located on post-synaptic densities of apical dendritic spines. Experiments in rodents (including wild type or reeler heterozygous mice) and non-human primates suggest the Reln secreted in the extracellular matrix of neocortex, via integrin receptors, modulates the function of the adaptor protein DAB1(drosophila disable-gene) homologous product) thereby participating in dynamic processes associated with plasticity changes in dendrites, dendritic spines and their synapses. A local protein synthesis at dendritic spines (ie the activity regulated cytoskeleton associated protein, Arc) probably acts as a signal for plastic modulatory activities in synapses operative in neural group interactions. A research strategy directed toward identifying specific neurochemical markers operative in the etiopathology of psychotic disorders lead to the identification of a downregulation (30-50%) of Reln and glutamic acid decarboxylase 67(GAD67) expression in prefrontal cortex and other brain areas of schizoprenia and bipolar disorder patients with psychosis. These downregulations were not due to neuronal damage, postmortem interval, or antipsychotic medication. The dysfunction of GABAergic interneurons observed in psychotic brains in combination with reduced Reln expression and downregulation of Reln-integrin receptor interaction, may provide an explanation for the reported decrease in neuropile expression including dendritic spine density reduction, in neocortex of schizophrenia patients. This downregulation of neuropile plasticity may be a factor to be considered in the etiology of the disintegration of consciousness, which is one of the primary signs of psychosis.
SCZ Keywordsschizophrenia, schizophrenic
4Proc. Natl. Acad. Sci. U.S.A. 2000 Mar 97: 3550-5
PMID10725376
TitleColocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex.
AbstractThe expression of telencephalic reelin (Reln) and glutamic acid decarboxylase mRNAs and their respective cognate proteins is down-regulated in postmortem brains of schizophrenia and bipolar disorder patients. To interpret the pathophysiological significance of this finding, immunoelectron microscopic experiments are required, but these cannot be carried out in postmortem human brains. As an alternative, we carried out such experiments in the cortex of rats and nonhuman primates. We found that Reln is expressed predominantly in layer I of both cortices and is localized to bitufted (double-bouquet), horizontal, and multipolar gamma-aminobutyric acid-ergic interneurons, which secrete Reln into extracellular matrix. Reln secretion is mediated by a constitutive mechanism that depends on the expression of a specific signal peptide present in the Reln carboxy-terminal domain. Extracellular matrix Reln is found to aggregate in proximity of postsynaptic densities expressed in apical dendrite spines, which include also the alpha(3) subunit of integrin receptors. Most pyramidal neurons of various cortical layers express the mouse-disabled 1 (DAB1) protein, which, after phosphorylation by a soluble tyrosine kinase, functions as an adapter protein, probably mediating a modulation of cytoskeleton protein expression. We hypothesize that the decrease of neuropil and dendritic spine density reported to exist in the neocortex of psychiatric patients may be related to a down-regulation of Reln-integrin interactions and the consequent decrease of cytoskeleton protein turnover.
SCZ Keywordsschizophrenia, schizophrenic
5Neurobiol. Dis. 2001 Oct 8: 723-42
PMID11592844
TitleDendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability.
AbstractIn this review, we will first present a brief overview of the current understanding of: (a) the biology of reelin; (b) the putative reelin signaling pathways via integrin receptor stimulation; (c) the cytosolic adapter protein DAB1, which appears to be operative in the transduction of reelin's pleiotropic actions in embryonic, adolescent, and adult brain; (d) the regulation of GABAergic function, including some aspects of GABAergic system development; and (e) dendritic spine function and its role in the regulation of synaptic plasticity. We argue that a downregulation of reelin expression occurring in prefrontal cortex and in every brain structure of schizophrenia patients so far studied may be associated with a decrease in dendritic spine expression that in turn may provide an important reduction of cortical function as documented by the downregulation of glutamic acid decarboxylase67 (GAD67) expression, which might be secondary to a reduction of GABAergic axon terminals. This hypothesis is supported by a genetic mouse model of reelin haploinsufficiency that replicates the above-described dendritic and presynaptic GABAergic defects documented in schizophrenia brains.
SCZ Keywordsschizophrenia, schizophrenic
6Nature 2011 Apr 472: 356-60
PMID21460838
TitleEphrin Bs are essential components of the Reelin pathway to regulate neuronal migration.
AbstractCoordinated migration of neurons in the developing and adult brain is essential for its proper function. The secreted glycoprotein Reelin (also known as RELN) guides migration of neurons by binding to two lipoprotein receptors, the very-low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2, also known as LRP8). Loss of Reelin function in humans results in the severe developmental disorder lissencephaly and it has also been associated with other neurological disorders such as epilepsy, schizophrenia and Alzheimer's disease. The molecular mechanisms by which Reelin activates its receptors and controls cellular functions are largely unknown. Here we show that the neuronal guidance cues ephrin B proteins are essential for Reelin signalling during the development of laminated structures in the brain. We show that ephrin Bs genetically interact with Reelin. Notably, compound mouse mutants (Reln(+/-); Efnb3(-/-) or Reln(+/-); Efnb2(-/-)) and triple ephrin B1, B2, B3 knockouts show neuronal migration defects that recapitulate the ones observed in the neocortex, hippocampus and cerebellum of the reeler mouse. Mechanistically, we show that Reelin binds to the extracellular domain of ephrin Bs, which associate at the membrane with VLDLR and ApoER2 in neurons. Clustering of ephrin Bs leads to the recruitment and phosphorylation of DAB1 which is necessary for Reelin signalling. Conversely, loss of function of ephrin Bs severely impairs Reelin-induced DAB1 phosphorylation. Importantly, activation of ephrin Bs can rescue the reeler neuronal migration defects in the absence of Reelin protein. Together, our results identify ephrin Bs as essential components of the Reelin receptor/signalling pathway to control neuronal migration during the development of the nervous system.
SCZ Keywordsschizophrenia, schizophrenic
7Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012 Jun 159B: 392-404
PMID22419519
TitleImpact of the Reelin signaling cascade (ligands-receptors-adaptor complex) on cognition in schizophrenia.
AbstractOur previous neurocognitive studies of schizophrenia outlined two clusters of affected subjects--cognitively spared (CS) and cognitive deficit (CD), the latter's characteristics pointing to developmental origins and impaired synaptic plasticity. Here we investigate the contribution of polymorphisms in major regulators of these processes to susceptibility to schizophrenia and to CD in patients. We examine variation in genes encoding proteins at the gateway of Reelin signaling: ligands RELN and APOE, their common receptors APOER2 and VLDLR, and adaptor DAB1. Association analysis with disease outcome and cognitive performance in the Western Australian Family Study of schizophrenia (WAFSS) was followed by replication analysis in the Australian schizophrenia Research Bank (ASRB) and in the Health in Men Study (HIMS) of normal aging males. In the WAFSS sample, we observed significant association of APOE, APOER2, VLDLR, and DAB1 SNPs with disease outcome in the case-control and CD-control datasets, and with pre-morbid intelligence and verbal memory in cases. HIMS replication analysis supported rs439401 (APOE regulatory region), and rs2297660 and rs3737983 (APOER2), with an effect on memory performance in normal aging subjects consistent with the findings in schizophrenia cases. APOER2 gene expression analysis revealed lower transcript levels in lymphoblastoid cells from cognitively impaired schizophrenia patients of the alternatively spliced exon 19, mediating Reelin signaling and synaptic plasticity in the adult brain. ASRB replication analysis produced marginally significant results, possibly reflecting a recruitment strategy biased toward CS patients. The data suggest a contribution of neurodevelopmental/synaptic plasticity genes to cognitive impairment in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
8Development 2012 Nov 139: 3986-96
PMID22992957
TitlePancortins interact with amyloid precursor protein and modulate cortical cell migration.
AbstractNeuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce ?-secretase- but not ?-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development.
SCZ Keywordsschizophrenia, schizophrenic
9Cereb. Cortex 2016 Jan -1: -1
PMID26762856
TitleDorsal Forebrain-Specific Deficiency of Reelin-Dab1 Signal Causes Behavioral Abnormalities Related to Psychiatric Disorders.
AbstractReelin-DAB1 signaling is involved in brain development and neuronal functions. The abnormalities in the signaling through either reduction of Reelin and DAB1 gene expressions or the genomic mutations in the brain have been reported to be associated with psychiatric disorders. However, it has not been clear if the deficiency in Reelin-DAB1 signaling is responsible for symptoms of the disorders. Here, to examine the function of Reelin-DAB1 signaling in the forebrain, we generated dorsal forebrain-specific DAB1 conditional knockout mouse (DAB1 cKO) and performed a behavioral test battery on the DAB1 cKO mice. Although conventional DAB1 null mutant mice exhibit cerebellar atrophy and cerebellar ataxia, the DAB1 cKO mice had normal cerebellum and showed no motor dysfunction. DAB1 cKO mice exhibited behavioral abnormalities, including hyperactivity, decreased anxiety-like behavior, and impairment of working memory, which are reminiscent of symptoms observed in patients with psychiatric disorders such as schizophrenia and bipolar disorder. These results suggest that deficiency of Reelin-DAB1 signal in the dorsal forebrain is involved in the pathogenesis of some symptoms of human psychiatric disorders.
SCZ Keywordsschizophrenia, schizophrenic
10Front Cell Neurosci 2016 -1 10: 89
PMID27092053
TitleEpigenetic RELN Dysfunction in Schizophrenia and Related Neuropsychiatric Disorders.
AbstractREELIN (RELN) is a large (420 kDa) glycoprotein that in adulthood is mostly synthesized in GABAergic neurons of corticolimbic structures. Upon secretion in the extracellular matrix (ECM), RELN binds to VLDL, APOE2, and ?3?2 Integrin receptors located on dendritic shafts and spines of postsynaptic pyramidal neurons. Reduced levels of RELN expression in the adult brain induce cognitive impairment and dendritic spine density deficits. RELN supplementation recovers these deficits suggesting a trophic action for RELN in synaptic plasticity. We and others have shown that altered RELN expression in schizophrenia (SZ) and bipolar (BP) disorder patients is difficult to reconcile with classical Mendelian genetic disorders and it is instead plausible to associate these disorders with altered epigenetic homeostasis. Support for the contribution of altered epigenetic mechanisms in the down-regulation of RELN expression in corticolimbic structures of psychotic patients includes the concomitant increase of DNA-methyltransferases and the increased levels of the methyl donor S-adenosylmethionine (SAM). It is hypothesized that these conditions lead to RELN promoter hypermethylation and a reduction in RELN protein amounts in psychotic patients. The decreased synthesis and release of RELN from GABAergic corticolimbic neurons could serve as a model to elucidate the epigenetic pathophysiological mechanisms acting at pyramidal neuron dendrites that regulate synaptic plasticity and cognition in psychotic and non-psychotic subjects.
SCZ Keywordsschizophrenia, schizophrenic
11Cereb. Cortex 2016 Mar -1: -1
PMID26965907
TitleBehavioral Resilience and Sensitivity to Locally Restricted Cortical Migration Deficits Induced by In Utero Knockdown of Disabled-1 in the Adult Rat.
AbstractIrregular neuronal migration plays a causal role in mental illnesses such as schizophrenia and autism, but the very nature of the migration deficits necessary to evoke adult behavioral changes is unknown. Here, we used in utero electroporation (IUE) in rats to induce a locally restricted, cortical migration deficit by knockdown of disabled-1 (DAB1), an intracellular converging point of the reelin pathway. After birth, selection of successfully electroporated rats by detection of in vivo bioluminescence of a simultaneously electroporated luciferase gene correlated to and was thus predictive to the number of electroporated neurons in postmortem histochemistry at 6 months of age. Rat neurons silenced for DAB1 did not migrate properly and their number surprisingly decreased after E22. Behavioral tests at adult ages (P180) revealed increased sensitivity to amphetamine as well as decreased habituation, but no deficits in memory tasks or motor functions. The data suggest that even subtle migration deficits involving only ten-thousands of cortical neurons during neurodevelopment can lead to lasting behavioral and neuronal changes into adulthood in some very specific behavioral domains. On the other hand, the lack of effects on various memory-related tasks may indicate resilience and plasticity of cognitive functions critical for survival under these specific conditions.
SCZ Keywordsschizophrenia, schizophrenic