1Psychiatr. Genet. 2008 Dec 18: 295-301
TitlePolymorphisms of coding trinucleotide repeats of homeogenes in neurodevelopmental psychiatric disorders.
AbstractAutism (MIM#209850) and schizophrenia (MIM#181500) are both neurodevelopmental psychiatric disorders characterized by a highly genetic component. Homeogenes and forkhead genes encode transcription factors, which have been involved in brain development and cell differentiation. Thus, they are relevant candidate genes for psychiatric disorders. Genetic studies have reported an association between autism and DLX2, HOXA1, EN2, ARX, and FOXP2 genes whereas only three studies of EN2, OTX2, and FOXP2 were performed on schizophrenia. Interestingly, most of these candidate genes contain trinucleotide repeats coding for polyamino acid stretch in which instability can be the cause of neurodevelopmental disorders. Our goal was to identify variations of coding trinucleotide repeats in schizophrenia, autism, and idiopathic mental retardation.
We screened the coding trinucleotide repeats of OTX1, EN1, DLX2, HOXA1, and FOXP2 genes in populations suffering from schizophrenia (247 patients), autism (98 patients), and idiopathic mental retardation (56 patients), and compared them with control populations (112 super controls and 202 healthy controls).
Novel deletions and insertions of coding trinucleotide repeats were found in the DLX2, HOXA1, and FOXP2 genes. Most of these variations were detected in controls and no difference in their distribution was observed between patient and control groups. Two different polymorphisms in FOXP2 were, however, found only in autistic patients and the functional consequences of these variations of repeats have to be characterized and correlated to particular clinical features.
This study did not identify specific disease risk variants of trinucleotide repeats in OTX1, EN1, DLX2, HOXA1, and FOXP2 candidate genes in neurodevelopmental psychiatric disorders.
SCZ Keywordsschizophrenia
2Epilepsia 2011 May 52: 984-92
TitleA novel mutation in the aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in females.
AbstractARX, the aristaless-related homeobox gene, is implicated in cerebral, testicular, and pancreatic development. ARX mutations are associated with various forms of epilepsy, developmental delay, and ambiguous genitalia in humans. A mouse model that recapitulates X-linked lissencephaly with ambiguous genitalia (XLAG) is far from elucidating the substrate for phenotypes that different ARX mutations cause. Moreover, despite phenotypic pleomorphism associated with X-linked dominant ARX mutations, heterozygous female carriers have not been thoroughly studied. Reviewing records of patients with ARX mutations, infantile epilepsies, and psychomotor retardation, we analyzed a family harboring a novel ARX mutation with different phenotypes in males and females, including Ohtahara syndrome.
Children's Hospital Boston patient records were retrospectively screened for patients with infantile epileptic encephalopathies who underwent ARX sequencing based on clinical suspicion. Identified families were analyzed for genetic and neuropsychiatric phenomena.
The proband was a male with Ohtahara syndrome, ambiguous genitalia, psychomotor delay, and central nervous system dysgenesis due to a novel ARX mutation in exon 5, causing a frameshift in the aristaless domain. Heterozygous females demonstrated neurocognitive/psychiatric phenomena including learning difficulties, anxiety, depression, and schizophrenia.
This is the first reported case of Ohtahara syndrome with abnormal genital and psychomotor development in the setting of this novel ARX mutation in exon 5. Based on the unique phenotype of the proband and on the presence of heterozygous females with neurocognitive/psychiatric ailments, this study describes the potential roles for ARX mutations in epilepsy and neuropsychiatric disease, underscoring the importance of ARX in interneuron development, cerebral electrical activity, cognition, and behavior.
SCZ Keywordsschizophrenia
3Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2014 Sep 369: -1
TitleRegulation of histone H3K4 methylation in brain development and disease.
AbstractThe growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.
SCZ Keywordsschizophrenia
4Schizophr. Res. 2016 Mar -1: -1
TitleAltered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia.
AbstractDysfunction of prefrontal cortex (PFC) inhibitory neurons that express the calcium-binding protein parvalbumin or the neuropeptide somatostatin in schizophrenia may be related to disturbances in the migration, phenotypic specification, and/or maturation of these neurons. These pre- and postnatal developmental stages are regulated in a cell type-specific manner by various transcription factors and co-activators, fibroblast growth factor receptors (FgfR), and other molecular markers. Consequently, we used quantitative PCR to quantify mRNA levels for these developmental regulators in the PFC of 62 schizophrenia subjects in whom parvalbumin and somatostatin neuron disturbances were previously reported, and in antipsychotic-exposed monkeys. Relative to unaffected comparison subjects, subjects with schizophrenia exhibited elevated mRNA levels for 1) the transcription factor MafB, which is expressed by parvalbumin and somatostatin neurons as they migrate from the medial ganglionic eminence to the cortex, 2) the transcriptional coactivator PGC-1?, which is expressed postnatally by parvalbumin neurons to maintain parvalbumin levels and inhibitory function, and 3) FgfR1, which is required for the migration and phenotypic specification of parvalbumin and somatostatin neurons. Elevations in these markers were most prominent in younger schizophrenia subjects and were not present in antipsychotic-exposed monkeys. Finally, expression levels of other important developmental regulators (i.e. Dlx1, Dlx5, Dlx6, SATB1, Sip1/Zeb2, ST8SIA4, cMaf, Nkx6.2, and ARX) were not altered in schizophrenia. The over-expression of a subset of molecular markers with distinct roles in the pre- and postnatal development of parvalbumin and somatostatin neurons might reflect compensatory mechanisms to sustain the development of these neurons in the face of other insults.
SCZ Keywordsschizophrenia