1Mol. Psychiatry 2003 Jul 8: 654-63
PMID12874601
Titlebeta-1,3-Glucuronyltransferase-1 gene implicated as a candidate for a schizophrenia-like psychosis through molecular analysis of a balanced translocation.
AbstractWe have mapped and sequenced both chromosome breakpoints of a balanced t(6;11)(q14.2;q25) chromosome translocation that segregates with a schizophrenia-like psychosis. Bioinformatics analysis of the regions revealed a number of confirmed and predicted transcripts. No confirmed transcripts are disrupted by either breakpoint. The chromosome 6 breakpoint region is gene poor, the closest transcript being the serotonin receptor 1E (HTR1E) at 625 kb telomeric to the breakpoint. The chromosome 11 breakpoint is situated close to the telomere. The closest gene, beta-1,3-glucuronyltransferase (B3GAT1 or GlcAT-P), is 299 kb centromeric to the breakpoint. B3GAT1 is the key enzyme during the biosynthesis of the carbohydrate epitope HNK-1, which is present on a number of cell adhesion molecules important in neurodevelopment. Mice deleted for the B3GAT1 gene show defects in hippocampal long-term potentiation and in spatial memory formation. We propose that the translocation causes a positional effect on B3GAT1, affecting expression levels and making it a plausible candidate for the psychosis found in this family. More generally, regions close to telomeres are highly polymorphic in both sequence and length in the general population and several studies have implicated subtelomeric deletions as a common cause of idiopathic mental retardation. This leads us to the hypothesis that polymorphic or other variation of the 11q telomere may affect the activity of B3GAT1 and be a risk factor for schizophrenia and related psychoses in the general population.
SCZ Keywordsschizophrenia
2Schizophr Bull 2009 Nov 35: 1163-82
PMID18552348
TitleSchizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.
AbstractMany genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind to influenza, rubella, or poliovirus genes. Certain genes associated with schizophrenia, including those also concerned with neurophysiology, are intimately related to the life cycles of the pathogens implicated in the disease. Several genes may affect pathogen virulence, while the pathogens in turn may affect genes and processes relevant to the neurophysiology of schizophrenia. For such genes, the strength of association in genetic studies is likely to be conditioned by the presence of the pathogen, which varies in different populations at different times, a factor that may explain the heterogeneity that plagues such studies. This scenario also suggests that drugs or vaccines designed to eliminate the pathogens that so clearly interact with schizophrenia susceptibility genes could have a dramatic effect on the incidence of the disease.
SCZ Keywordsschizophrenia
3Biol. Psychiatry 2011 Jan 69: 90-6
PMID20950796
TitleCandidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area.
AbstractThe Human Natural Killer-1 carbohydrate (HNK-1) is involved in neurodevelopment and synaptic plasticity. Extracellular matrix structures called perineuronal nets, condensed around subsets of neurons and proximal dendrites during brain maturation, regulate synaptic transmission and plasticity.
Ten genes of importance for HNK-1 biosynthesis (B3GAT1, B3GAT2, and CHST10) or for the formation of perineuronal nets (TNR, BCAN, NCAN, HAPLN1, HAPLN2, HAPLN3, and HAPLN4) were investigated for potential involvement in schizophrenia (SCZ) susceptibility, by genotyping 104 tagSNPs in the Scandinavian Collaboration on Psychiatric Etiology sample (849 cases; 1602 control subjects). Genome-wide association study imputation data from the European SGENE-plus sample (2663 cases; 13,498 control subjects) were used for comparison. The effect of SCZ risk alleles on brain structure was investigated in a Norwegian subset (98 cases; 177 control subjects) with structural magnetic resonance imaging data.
Five single nucleotide polymorphisms (SNPs), located in two adjacent estimated linkage disequilibrium blocks in the first intron of ?-1,3-glucuronyltransferase 2 (B3GAT2), were nominally associated with SCZ (.004 ? P(empirical) ? .05). The rs2460691 was significantly associated in the comparison sample and in the meta-analysis after correction for all 121 SNP/haplotype tests (P(raw) = 1 × 10(-4); P(corrected) = .018). Increased dosage of the rs2460691 SCZ risk allele was associated with decreased cortical area (p = .002) but not thickness or hippocampal volume. A second SNP (r(2) = .24 with rs10945275), which conferred the highest SCZ risk effect in the Norwegian subset, was also associated with cortical area.
The present results suggest that effects on biosynthesis of the neuronal epitope HNK-1, through common B3GAT2 variation, could increase the risk of SCZ, possibly by decreasing cortical area.
SCZ Keywordsschizophrenia