1Pharmacogenomics J. 2005 -1 5: 298-304
PMID16027736
TitleAntipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action?
AbstractSeveral studies have reported on structural abnormalities, decreased myelination and oligodendrocyte dysfunction in post-mortem brains from schizophrenic patients. Glia-derived cholesterol is essential for both myelination and synaptogenesis in the CNS. Lipogenesis and myelin synthesis are thus interesting etiological candidate targets in schizophrenia. Using a microarray approach, we here demonstrate that the antipsychotic drugs clozapine and haloperidol upregulate several genes involved in cholesterol and fatty acid biosynthesis in cultured human glioma cells, including HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase), HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase-1), FASN (fatty acid synthase) and SCD (stearoyl-CoA desaturase). The changes in gene expression were followed by enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and triglycerides. The upregulated genes are all known to be controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We show that clozapine and haloperidol both activate the SREBP system. The antipsychotic-induced SREBP-mediated increase in glial cell lipogenesis could represent a novel mechanism of action, and may also be relevant for the metabolic side effects of antipsychotics.
SCZ Keywordsschizophrenia, schizophrenic
2Pharmacogenomics J. 2005 -1 5: 298-304
PMID16027736
TitleAntipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action?
AbstractSeveral studies have reported on structural abnormalities, decreased myelination and oligodendrocyte dysfunction in post-mortem brains from schizophrenic patients. Glia-derived cholesterol is essential for both myelination and synaptogenesis in the CNS. Lipogenesis and myelin synthesis are thus interesting etiological candidate targets in schizophrenia. Using a microarray approach, we here demonstrate that the antipsychotic drugs clozapine and haloperidol upregulate several genes involved in cholesterol and fatty acid biosynthesis in cultured human glioma cells, including HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase), HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase-1), FASN (fatty acid synthase) and SCD (stearoyl-CoA desaturase). The changes in gene expression were followed by enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and triglycerides. The upregulated genes are all known to be controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We show that clozapine and haloperidol both activate the SREBP system. The antipsychotic-induced SREBP-mediated increase in glial cell lipogenesis could represent a novel mechanism of action, and may also be relevant for the metabolic side effects of antipsychotics.
SCZ Keywordsschizophrenia, schizophrenic
3BMC Neurosci 2006 -1 7: 69
PMID17052361
TitleDrug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs.
AbstractThe etiology of schizophrenia is unknown, but neurodevelopmental disturbances, myelin- and oligodendrocyte abnormalities and synaptic dysfunction have been suggested as pathophysiological factors in this severe psychiatric disorder. Cholesterol is an essential component of myelin and has proved important for synapse formation. Recently, we demonstrated that the antipsychotic drugs clozapine and haloperidol stimulate lipogenic gene expression in cultured glioma cells through activation of the sterol regulatory element-binding protein (SREBP) transcription factors. We here compare the action of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and ziprasidone on SREBP activation and SREBP-controlled gene expression (ACAT2, HMGCR, HMGCS1, FDPS, SC5DL, DHCR7, LDLR, FASN and SCD1) in four CNS-relevant human cell lines.
There were marked differences in the ability of the antipsychotic drugs to activate the expression of SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a context of therapeutically relevant concentrations. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines) displayed more pronounced drug-induced SREBP activation compared to the response in HCN2 human cortical neurons and SH-SY5Y neuroblastoma cells, indicating that antipsychotic-induced activation of lipogenesis is most prominent in glial cells.
Our present data show a marked variation in the ability of different antipsychotics to induce SREBP-controlled transcriptional activation of lipogenesis in cultured human CNS-relevant cells. We propose that this effect could be relevant for the therapeutic efficacy of some antipsychotic drugs.
SCZ Keywordsschizophrenia, schizophrenic