1Proc. Natl. Acad. Sci. U.S.A. 2007 Jun 104: 10164-9
PMID17553960
TitleRegulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars.
AbstractGABAergic dysfunction is present in the hippocampus in schizophrenia (SZ) and bipolar disorder (BD). The trisynaptic pathway was "deconstructed" into various layers of sectors CA3/2 and CA1 and gene expression profiling performed. Network association analysis was used to uncover genes that may be related to regulation of glutamate decarboxylase 67 (GAD(67)), a marker for this system that has been found by many studies to show decreased expression in SZs and BDs. The most striking change was a down-regulation of GAD(67) in the stratum oriens (SO) of CA2/3 in both groups; CA1 only showed changes in the SO of schizophrenics. The network generated for GAD(67) contained 25 genes involved in the regulation of kainate receptors, TGF-beta and Wnt signaling, as well as transcription factors involved in cell growth and differentiation. In SZs, IL-1beta, (GRIK2/3), TGF-beta2, TGF-betaR1, histone deacetylase 1 (HDAC1), death associated protein (DAXX), and cyclin D2 (CCND2) were all significantly up-regulated, whereas in BDs, PAX5, Runx2, LEF1, TLE1, and CCND2 were significantly down-regulated. In the SO of CA1 of BDs, where GAD67 showed no expression change, TGF-beta and Wnt signaling genes were all up-regulated, but other transcription factors showed no change in expression. In other layers/sectors, BDs showed no expression changes in these GAD(67) network genes. Overall, these results are consistent with the hypothesis that decreased expression of GAD(67) may be associated with an epigenetic mechanism in SZ. In BD, however, a suppression of transcription factors involved in cell differentiation may contribute to GABA dysfunction.
SCZ Keywordsschizophrenia, schizophrenics
2Proc. Natl. Acad. Sci. U.S.A. 2007 Jun 104: 10164-9
PMID17553960
TitleRegulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars.
AbstractGABAergic dysfunction is present in the hippocampus in schizophrenia (SZ) and bipolar disorder (BD). The trisynaptic pathway was "deconstructed" into various layers of sectors CA3/2 and CA1 and gene expression profiling performed. Network association analysis was used to uncover genes that may be related to regulation of glutamate decarboxylase 67 (GAD(67)), a marker for this system that has been found by many studies to show decreased expression in SZs and BDs. The most striking change was a down-regulation of GAD(67) in the stratum oriens (SO) of CA2/3 in both groups; CA1 only showed changes in the SO of schizophrenics. The network generated for GAD(67) contained 25 genes involved in the regulation of kainate receptors, TGF-beta and Wnt signaling, as well as transcription factors involved in cell growth and differentiation. In SZs, IL-1beta, (GRIK2/3), TGF-beta2, TGF-betaR1, histone deacetylase 1 (HDAC1), death associated protein (DAXX), and cyclin D2 (CCND2) were all significantly up-regulated, whereas in BDs, PAX5, Runx2, LEF1, TLE1, and CCND2 were significantly down-regulated. In the SO of CA1 of BDs, where GAD67 showed no expression change, TGF-beta and Wnt signaling genes were all up-regulated, but other transcription factors showed no change in expression. In other layers/sectors, BDs showed no expression changes in these GAD(67) network genes. Overall, these results are consistent with the hypothesis that decreased expression of GAD(67) may be associated with an epigenetic mechanism in SZ. In BD, however, a suppression of transcription factors involved in cell differentiation may contribute to GABA dysfunction.
SCZ Keywordsschizophrenia, schizophrenics
3PLoS ONE 2012 -1 7: e33352
PMID22457755
TitleInduction of the GABA cell phenotype: an in vitro model for studying neurodevelopmental disorders.
AbstractRecent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD?? (GAD1) expression and may play a role in ?-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD?? regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD?? and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD??-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD??, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of "differentiated" HiB5 neurons. In the presence of CaČ? and K?, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD??, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD?? regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD?? regulation in the adult hippocampus.
SCZ Keywordsschizophrenia, schizophrenics