1Mol. Psychiatry 2004 Oct 9: 932-45, 895
PMID15170462
TitleAcute amygdalar activation induces an upregulation of multiple monoamine G protein coupled pathways in rat hippocampus.
AbstractA "partial" rodent model for schizophrenia has been used to characterize the regulation of hippocampal genes in response to amygdalar activation. At 96 h after the administration of picrotoxin into the basolateral nucleus, we have observed an increase in the expression of genes associated with 18 different monoamine (ie adrenergic alpha 1, alpha 2 and beta 2, serotonergic 5HT5b and 5HT6, dopamine D4 and muscarinic m1, m2 and m3) and peptide (CCK A and B, angiotensin 1A, mu and kappa opiate, FSH, TSH, LH, GNRH, and neuropeptide Y) G-protein coupled receptors (GPCRs). These latter receptors are associated with three different G protein signaling pathways (Gq, Gs, and Gi) in which significant changes in gene expression were also noted for adenylate cyclase (AC4), phosphodiesterase (PDE4D), protein kinase A (PKA), and protein kinase C (PKC). Quantitative RT-PCR was used to validate the results and demonstrated that there were predictable increases of three GPCRs selected for this analysis, including the dopamine D4, alpha 1b, and CCK-B receptors. Eight out of the nine monoamine receptors showing these changes have moderate to high affinity for the atypical antipsychotic, clozapine. Taken together, these results suggest that amygdalar activation may play a role in the pathophysiology and treatment of psychosis by regulating the activity of multiple GPCR and metabolic pathways in hippocampal cells.
SCZ Keywordsschizophrenia
2J. Pharmacol. Exp. Ther. 2007 Aug 322: 600-9
PMID17519386
TitlePDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying N-terminal region is identical to that of cAMP phosphodiesterase-4D6 (PDE4D6).
AbstractThe cAMP-specific phosphodiesterase-4 (PDE4) gene family is the target of several potential selective therapeutic inhibitors. The four PDE4 genes generate several distinct protein-coding isoforms through the use of alternative promoters and 5'-coding exons. Using mouse transcripts, we identified a novel, super-short isoform of human PDE4B encoding a novel 5' terminus, which we label PDE4B5. The protein-coding region of the novel 5' exon is conserved across vertebrates, chicken, zebrafish, and fugu. Reverse-transcription-polymerase chain reaction (PCR) and quantitative (PCR) measurements show that this isoform is brain-specific. The novel protein is 58 +/- 2 kDa; it has cAMP hydrolyzing enzymatic activity and is inhibited by PDE4-selective inhibitors rolipram and cilomilast (Ariflo). Confocal and subcellular fractionation analyses show that it is distributed predominantly and unevenly within the cytosol. The 16 novel N-terminal residues of PDE4B5 are identical to the 16 N-terminal residues of the super-short isoform of PDE4D (PDE4D6), which is also brain-specific. PDE4B5 is able to bind the scaffold protein DISC1, whose gene has been linked to schizophrenia. Microarray expression profiling of the PDE4 gene family shows that specific PDE4 genes are enriched in muscle and blood fractions; however, only by monitoring the individual isoforms is the brain specificity of the super-short PDE4D and PDE4B isoforms revealed. Understanding the distinct tissue specificity of PDE4 isoforms will be important for understanding phosphodiesterase biology and opportunities for therapeutic intervention.
SCZ Keywordsschizophrenia
3Biochem. Biophys. Res. Commun. 2008 Dec 377: 1091-6
PMID18983980
TitleDISC1, PDE4B, and NDE1 at the centrosome and synapse.
AbstractDisrupted-In-schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.
SCZ Keywordsschizophrenia
4Psychopharmacology (Berl.) 2008 Mar 197: 115-26
PMID18060387
TitleBehavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme.
AbstractPhosphodiesterases (PDEs) belonging to the PDE4 family control intracellular concentrations of cyclic adenosine monophosphate (cAMP) by catalyzing its hydrolysis. Four separate PDE4 genes (PDE4A, PDE4B, PDE4C, and PDE4D) have been identified. PDE4 has been reported to be involved in various central nervous system (CNS) functions including depression, memory, and schizophrenia, although the specific subtype mediating these effects remains unclear.
To investigate the role of PDE4B in the CNS, PDE4B wild-type and knockout mice (C57BL/6N background) were assessed in a variety of well-characterized behavioral tasks, and their brains were assayed for monoamine content.
Knockout mice showed a significant reduction in prepulse inhibition. Spontaneous locomotor activity was decreased (16%) in knockout mice. Furthermore, when challenged with amphetamine, both groups of mice responded similarly to a low dose of d-amphetamine (1.0 mg/kg), but knockout mice showed an enhanced response to a higher dose (1.78 mg/kg). Decreases in baseline levels of monoamines and their metabolites within the striatum of knockout mice were also observed. PDE4B knockout mice showed a modest decrease in immobility time in the forced swim test that approached significance. In several other tests, including the elevated plus maze, hot plate, passive avoidance, and Morris water maze, wild-type and knockout mice performed similarly.
The present studies demonstrate decreased striatal DA and 5-HT activity in the PDE4B knockout mice associated with decreased prepulse inhibition, decreased baseline motor activity, and an exaggerated locomotor response to amphetamine. These data further support a role for PDE4B in psychiatric diseases and striatal function.
SCZ Keywordsschizophrenia
5PLoS ONE 2009 -1 4: e4906
PMID19300510
TitleThe DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes.
AbstractGenetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes.
Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis.
Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways.
SCZ Keywordsschizophrenia
6Biol. Psychiatry 2009 Jun 65: 1055-62
PMID19251251
TitleAssociation between genes of Disrupted in schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses.
AbstractDisrupted in schizophrenia 1 (DISC1) is currently one of the most interesting candidate genes for major mental illness, having been demonstrated to associate with schizophrenia, bipolar disorder, major depression, autism, and Asperger's syndrome. We have previously reported a DISC1 haplotype, HEP3, and an NDE1 spanning tag haplotype to associate to schizophrenia in Finnish schizophrenia families. Because both DISC1 and NDE1 display association in our study sample, we hypothesized that other genes interacting with DISC1 might also have a role in the etiology of schizophrenia.
We selected 11 additional genes encoding components of the "DISC1 pathway" and studied these in our study sample of 476 families including 1857 genotyped individuals. We performed single nucleotide polymorphism (SNP) and haplotype association analyses in two independent sets of families. For markers and haplotypes found to be consistently associated in both sets, the overall significance was tested with the combined set of families.
We identified three SNPs to be associated with schizophrenia in PDE4D (rs1120303, p = .021), PDE4B (rs7412571, p = .018), and NDEL1 (rs17806986, p = .0038). Greater significance was observed with allelic haplotypes of PDE4D (p = .00084), PDE4B (p = .0022 and p = .029), and NDEL1 (p = .0027) that increased or decreased schizophrenia susceptibility.
Our findings with other converging lines of evidence support the underlying importance of DISC1-related molecular pathways in the etiology of schizophrenia and other major mental illnesses.
SCZ Keywordsschizophrenia
7Nat. Biotechnol. 2010 Jan 28: 63-70
PMID20037581
TitleDesign of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety.
AbstractPhosphodiesterase 4 (PDE4), the primary cAMP-hydrolyzing enzyme in cells, is a promising drug target for a wide range of conditions. Here we present seven co-crystal structures of PDE4 and bound inhibitors that show the regulatory domain closed across the active site, thereby revealing the structural basis of PDE4 regulation. This structural insight, together with supporting mutagenesis and kinetic studies, allowed us to design small-molecule allosteric modulators of PDE4D that do not completely inhibit enzymatic activity (I(max) approximately 80-90%). These allosteric modulators have reduced potential to cause emesis, a dose-limiting side effect of existing active site-directed PDE4 inhibitors, while maintaining biological activity in cellular and in vivo models. Our results may facilitate the design of CNS therapeutics modulating cAMP signaling for the treatment of Alzheimer's disease, Huntington's disease, schizophrenia and depression, where brain distribution is desired for therapeutic benefit.
SCZ Keywordsschizophrenia
8Psychopharmacology (Berl.) 2012 Feb 219: 1065-79
PMID21833500
TitlePhosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex.
AbstractAlteration of dopamine neurotransmission in the prefrontal cortex, especially hypofunction of dopamine D1 receptors, contributes to psychotic symptoms and cognitive deficit in schizophrenia. D1 receptors signal through the cAMP/PKA second messenger cascade, which is modulated by phosphodiesterase (PDE) enzymes that hydrolyze and inactivate cyclic nucleotides. Though several PDEs are expressed in cortical neurons, the PDE4 enzyme family (PDE4A-D) has been implicated in the control of cognitive function. The best studied isoform, PDE4B, interacts with a schizophrenia susceptibility factor, disrupted in schizophrenia 1 (DISC1).
We explore the control of mouse frontal cortex dopamine D1 receptor signaling and associated behavior by PDE4.
Inhibition of PDE4 by rolipram induced activation of cAMP/PKA signaling in cortical slices and in vivo, leading to the phosphorylation of DARPP-32 and other postsynaptic and presynaptic PKA-substrates. Rolipram also enhanced DARPP-32 phosphorylation invoked by D1 receptor activation. Immunohistochemical studies demonstrated PDE4A, PDE4B, and PDE4D expression in DARPP-32-positive neurons in layer VI of frontal cortex, most likely in D1 receptor-positive, glutamatergic corticothalamic pyramidal neurons. Furthermore, the ability of rolipram treatment to improve the performance of mice in a sensorimotor gating test was DARPP-32-dependent.
PDE4, which is co-expressed with DARPP-32 in D1 receptor-positive cortical pyramidal neurons in layer VI, modulates the level of D1 receptor signaling and DARPP-32 phosphorylation in the frontal cortex, likely influencing cognitive function. These biochemical and behavioral actions of PDE4 inhibitors may contribute to the hypothesized antipsychotic actions of this class of compounds.
SCZ Keywordsschizophrenia
9Mol. Psychiatry 2013 Aug 18: 898-908
PMID23587879
TitleDISC1-ATF4 transcriptional repression complex: dual regulation of the cAMP-PDE4 cascade by DISC1.
AbstractDisrupted-In-schizophrenia 1 (DISC1), a risk factor for major mental illnesses, has been studied extensively in the context of neurodevelopment. However, the role of DISC1 in neuronal signaling, particularly in conjunction with intracellular cascades that occur in response to dopamine, a neurotransmitter implicated in numerous psychiatric disorders, remains elusive. Previous data suggest that DISC1 interacts with numerous proteins that impact neuronal function, including activating transcription factor 4 (ATF4). In this study, we identify a novel DISC1 and ATF4 binding region in the genomic locus of phosphodiesterase 4D (PDE4D), a gene implicated in psychiatric disorders. We found that the loss of function of either DISC1 or ATF4 increases PDE4D9 transcription, and that the association of DISC1 with the PDE4D9 locus requires ATF4. We also show that PDE4D9 is increased by D1-type dopamine receptor dopaminergic stimulation. We demonstrate that the mechanism for this increase is due to DISC1 dissociation from the PDE4D locus in mouse brain. We further characterize the interaction of DISC1 with ATF4 to show that it is regulated via protein kinase A-mediated phosphorylation of DISC1 serine-58. Our results suggest that the release of DISC1-mediated transcriptional repression of PDE4D9 acts as feedback inhibition to regulate dopaminergic signaling. Furthermore, as DISC1 loss-of-function leads to a specific increase in PDE4D9, PDE4D9 itself may represent an attractive target for therapeutic approaches in psychiatric disorders.
SCZ Keywordsschizophrenia
10Pharmacogenet. Genomics 2013 Feb 23: 69-77
PMID23241943
TitleGenome-wide association study of patient-rated and clinician-rated global impression of severity during antipsychotic treatment.
AbstractTo examine the unique and congruent findings between multiple raters in a genome-wide association study (GWAS) in the context of understanding individual differences in treatment response during antipsychotic therapy for schizophrenia.
We performed GWAS to search for genetic variation affecting treatment response. The analysis sample included 738 patients with schizophrenia, successfully genotyped for ?492k single nucleotide polymorphisms (SNPs) from the Clinical Antipsychotic Trial of Intervention Effectiveness. Outcomes included both clinician and patient report of illness severity on global impression scales, the clinical global impression severity scale and patient global impression, respectively. Our criterion for genome-wide significance was a prespecified threshold ensuring that, on average, only 10% of the significant findings are false discoveries.
Thirteen SNPs reached genome-wide significance. The top findings indicated three SNPs in PDE4D, 5q12.1 (P=4.2×10, 1.6×10, 1.8×10), mediating the effects of quetiapine on patient-reported severity and an additional three SNPs in TJP1, 15q13.1 (P=2.25×10, 4.86×10, 4.91×10), mediating the effects of risperidone on patient-reported severity. For clinician-reported severity, two SNPs in PPA2, 4q24 (P=3.68×10, 5.05×10), were found to reach genome-wide significance.
We found evidence of both a novel and a consistent association when examining the results from the patient and clinician ratings, suggesting that different raters may capture unique facets of schizophrenia. Although our findings require replication and functional validation, this study shows the potential of GWAS to discover genes that potentially mediate treatment response of antipsychotic medication.
SCZ Keywordsschizophrenia
11Cell. Signal. 2014 Sep 26: 1958-74
PMID24815749
TitleMitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression.
AbstractIn Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to locate primarily not only in the perinuclear region of Rat-1 cells but also at the cell margins. We propose that the sequestration of PDE4D9 in a specific complex together with AMPK, ERK, MK2 and the H2O2-activatable 'switch' kinase allows for its selective multi-site phosphorylation, activation and regulation in mitosis.
SCZ Keywordsschizophrenia
12Mol. Divers. 2016 Feb 20: 77-92
PMID26290462
TitleNew insights into PDE4B inhibitor selectivity: CoMFA analyses and molecular docking studies.
AbstractPDE4 inhibitors have been largely studied because of their promising therapeutic effects concerning inflammation and neurodegenerative dysfunctions, such as depression, schizophrenia and Alzheimer's diseases. In this context, the PDE4B isoform proved to be particularly involved in the activation of inflammatory responses, while the PDE4D subfamily is more associated with neuropathologies. The clinical use of PDE4 inhibitors was restricted by the presence of prominent side effects probably due to their non-specific action across the different isoforms. Therefore, this work deals with the development of 3D-QSAR models, supported by molecular docking studies, to identify the key requirements underlying selective PDE4B or PDE4D inhibition. The results highlighted the ligand-based approach as a promising tool to guide the rational design of novel PDE4 inhibitors endowed with high affinity and selectivity profiles. The alignment of compound 1-85 and the model A statistical results are depicted.
SCZ Keywordsschizophrenia