1Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014 Dec 165B: 635-46
PMID25209194
TitleSynergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness.
AbstractLiterature indicates key role of glutamatergic pathway genes in antipsychotic response among schizophrenia patients. However, molecular basis of their underlying role in antipsychotic response remained unexplained. Thus, to unravel their molecular underpinnings, we sought to investigate interactions amongst GRM3, SLC1A1, SLC1A2, SLC1A3, SLC1A4 gene polymorphisms with drug response in south Indian schizophrenia patients. We genotyped 48 SNPs from these genes in 423 schizophrenia patients stratified into low and high severity of illness groups. The SNPs and haplotypic combinations of associated SNPs were examined for their association with antipsychotic response. Multifactor-dimensionality-reduction was further used to explore gene-gene interaction among these SNPs and 53 SNPs from previously studied genes (BDNF, RGS4, SLC6A3, PI4KA, and PIP4K2A). Single SNP and haplotype analyses revealed no significant association with drug response irrespective of severity of illness. Gene-gene interaction analyses yielded promising leads, including an observed synergistic effect between PI4KA_rs165854 and GRM3_rs1468412 polymorphisms and incomplete antipsychotic response in schizophrenia patients with low severity of illness (OR = 12.4; 95%CI = 3.69-41.69). Further, this interaction was also observed in atypical monotherapy (n = 355) and risperidone (n = 260) treatment subgroups (OR = 11.21; 95%CI = 3.30-38.12 and OR = 13.5; 95%CI = 3.03-121.61 respectively). PI4KA is known to be involved in the biosynthesis of phosphatidylinositol-4, 5-bisphosphate which regulates exocytotic fusion of synaptic vesicles (glutamate, dopamine) with the plasma membrane and regulates duration of signal transduction of GPCRs. Whereas GRM3 regulates glutamate and dopamine transmission. Present findings indicate that PI4KA and GRM3 polymorphisms have potential to jointly modulate antipsychotic response. These results warrant additional replication studies to shed further light on these interactions.
SCZ Keywordsschizophrenia
2PLoS ONE 2014 -1 9: e102556
PMID25025909
TitleGenetic variations of PIP4K2A confer vulnerability to poor antipsychotic response in severely ill schizophrenia patients.
AbstractLiterature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR) analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n?=?355) and risperidone (n?=?260) treated subgroups. All associations were estimated as odds ratio (OR) and 95% confidence interval (CI) and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396) of PIP4K2A gene in incomplete responders (corrected p-value?=?0.001; adjusted-OR?=?3.19, 95%-CI?=?1.46-6.98) with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR?=?7.91, 95%-CI?=?4.08-15.36). While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in incomplete responders with low severity (OR?=?4.09, 95%-CI?=?2.09-8.02). Our findings provide strong evidence that diplotype ATTGCT/ATTGCT of PIP4K2A gene conferred approximately three-times higher incomplete responsiveness towards antipsychotics in severely ill patients. These results are consistent with the known role of phosphatidyl-inositol-signaling elements in antipsychotic action and outcome. Findings have implication for future molecular genetic studies as well as personalized medicine. However more work is warranted to elucidate underlying causal biological pathway.
SCZ Keywordsschizophrenia