1Proc. Natl. Acad. Sci. U.S.A. 2008 Apr 105: 6133-8
PMID18413613
TitleThe evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia.
AbstractThe G protein-coupled receptor (GPCR) family is highly diversified and involved in many forms of information processing. SREB2 (GPR85) is the most conserved GPCR throughout vertebrate evolution and is expressed abundantly in brain structures exhibiting high levels of plasticity, e.g., the hippocampal dentate gyrus. Here, we show that SREB2 is involved in determining brain size, modulating diverse behaviors, and potentially in vulnerability to schizophrenia. Mild overexpression of SREB2 caused significant brain weight reduction and ventricular enlargement in transgenic (Tg) mice as well as behavioral abnormalities mirroring psychiatric disorders, e.g., decreased social interaction, abnormal sensorimotor gating, and impaired memory. SREB2 KO mice showed a reciprocal phenotype, a significant increase in brain weight accompanying a trend toward enhanced memory without apparent other behavioral abnormalities. In both Tg and KO mice, no gross malformation of brain structures was observed. Because of phenotypic overlap between SREB2 Tg mice and schizophrenia, we sought a possible link between the two. Minor alleles of two SREB2 SNPs, located in intron 2 and in the 3' UTR, were overtransmitted to schizophrenia patients in a family-based sample and showed an allele load association with reduced hippocampal gray matter volume in patients. Our data implicate SREB2 as a potential risk factor for psychiatric disorders and its pathway as a target for psychiatric therapy.
SCZ Keywordsschizophrenia
2Eur. J. Neurosci. 2012 Sep 36: 2597-608
PMID22697179
TitleSREB2/GPR85, a schizophrenia risk factor, negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent learning and memory.
AbstractSREB2/GPR85, a member of the super-conserved receptor expressed in brain (SREB) family, is the most conserved G-protein-coupled receptor in vertebrate evolution. Previous human and mouse genetic studies have indicated a possible link between SREB2 and schizophrenia. SREB2 is robustly expressed in the hippocampal formation, especially in the dentate gyrus, a structure with an established involvement in psychiatric disorders and cognition. However, the function of SREB2 in the hippocampus remains elusive. Here we show that SREB2 regulates hippocampal adult neurogenesis, which impacts on cognitive function. Bromodeoxyuridine incorporation and immunohistochemistry were conducted in SREB2 transgenic (Tg, over-expression) and knockout (KO, null-mutant) mice to quantitatively assay adult neurogenesis and newborn neuron dendritic morphology. Cognitive responses associated with adult neurogenesis alteration were evaluated in SREB2 mutant mice. In SREB2 Tg mice, both new cell proliferation and new neuron survival were decreased in the dentate gyrus, whereas an enhancement of new neuron survival occurred in SREB2 KO mouse dentate gyrus. Doublecortin staining revealed dendritic morphology deficits of newly generated neurons in SREB2 Tg mice. In a spatial pattern separation task, SREB2 Tg mice displayed a decreased ability to discriminate spatial relationships, whereas SREB2 KO mice had enhanced abilities in this task. Additionally, SREB2 Tg and KO mice had reciprocal phenotypes in a Y-maze working memory task. Our results indicate that SREB2 is a negative regulator of adult neurogenesis and consequential cognitive functions. Inhibition of SREB2 function may be a novel approach to enhance hippocampal adult neurogenesis and cognitive abilities to ameliorate core symptoms of psychiatric patients.
SCZ Keywordsschizophrenia
3Neuropsychopharmacology 2013 Jan 38: 341-9
PMID22968816
TitleEffect of schizophrenia risk-associated alleles in SREB2 (GPR85) on functional MRI phenotypes in healthy volunteers.
AbstractGenetic variants in GPR85 (SREB2: rs56080411 and rs56039557) have been associated with risk for schizophrenia. Here, we test the hypothesis that these variants impact on brain function in normal subjects, measured with functional magnetic resonance imaging (fMRI) paradigms that target regions with greatest SREB2 expression (hippocampal formation and amygdaloid complex). During a facial emotion recognition paradigm, a significant interaction of rs56080411 genotype by sex was found in the left amygdaloid complex (male risk allele carriers showed less activation than male homozygotes for the non-risk allele, while females showed the opposite pattern). During aversive encoding of an emotional memory paradigm, we found that risk allele carriers for rs56080411 had greater activation in the right inferior frontal gyrus. Trends in the same direction were present for rs56039557 in the right occipital cortex and right fusiform gyrus. During a working memory paradigm, a significant sex-by-genotype interaction was found with male risk allele carriers of rs56080411 having inefficient activation within the left dorsolateral prefrontal cortex (DLPFC), compared with same sex non-risk carriers, while females revealed an opposite pattern, despite similar levels of performance. These data suggest that risk-associated variants in SREB2 are associated with phenotypes similar to those found in patients with schizophrenia in the DLPFC and the amygdala of males, while the pattern is opposite in females. The findings in females and during the emotional memory paradigm are consistent with modulation by SREB2 of brain circuitries implicated in mood regulation and may be relevant to neuropsychiatric conditions other than schizophrenia.
SCZ Keywordsschizophrenia
4Mol Autism 2015 -1 6: 17
PMID25780553
TitleThe association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis.
AbstractAutism spectrum disorder (ASD) has a complex genetic etiology. Some symptoms and mutated genes, including neuroligin (NLGN), neurexin (NRXN), and SH3 and multiple ankyrin repeat domains protein (SHANK), are shared by schizophrenia and ASD. Little is known about the molecular pathogenesis of ASD. One of the possible molecular pathogenesis is an imbalance of excitatory and inhibitory receptors linked with the NLGN-PSD-95-SHANK complex via postsynaptic density protein/Drosophila disc large tumor suppressor/zonula occludens-1 protein (PDZ) binding. In the present study, we focused on GPR85 as a candidate gene for ASD because the C-terminal amino acid sequence of GPR85 [Thr-Cys-Val-Ile (YCVI)] is classified as a type II PDZ-binding motif, and GPR85 is a risk factor for schizophrenia. GPR85 is an orphan receptor that regulates neural and synaptic plasticity and modulates diverse behaviors, including learning and memory. While searching for molecules that associate with GPR85, we found that GPR85 was associated with postsynaptic density protein (PSD)-95 linked with NLGN in the brain.
We examined the proteins that associate with the C-terminal sequence of GPR85 by pull-down assay and immunoblot analysis and searched for a mutation of the GPR85 gene in patients with ASD. We used immunostaining to examine the intracellular localization of mutated GPR85 and its influence on the morphology of cells and neurons.
The C-terminal sequence of GPR85 interacted with PSD-95 at PDZ1, while NLGN interacted with PSD-95 at PDZ3. Two male patients with ASD from independent Japanese families possessed inherited missense mutations at conserved sites in GPR85: one had T1033C (M152T) and the other had G1239T (V221L). These mutations were located in a domain related to G protein interaction and signal transduction. In contrast to wild-type GPR85, mutated GPR85 was more preferentially accumulated, causing endoplasmic reticulum stress, and disturbed the dendrite formation of hippocampal neurons.
GPR85 associated with the PSD-95 linked with NLGN, which is related to ASD. GPR85 carrying the mutations detected in ASD patients disturbed dendrite formation that could be the candidate for molecular pathogenesis of ASD through the associated NLGN-PSD-95 receptor complex.
SCZ Keywordsschizophrenia