1BMC Psychiatry 2004 -1 4: 21
PMID15296513
TitleAssociation study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia.
AbstractThe glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia.
We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia. The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area.
We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 x 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets.
We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
2BMC Psychiatry 2004 -1 4: 21
PMID15296513
TitleAssociation study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia.
AbstractThe glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia.
We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia. The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area.
We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 x 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets.
We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
3BMC Psychiatry 2004 -1 4: 21
PMID15296513
TitleAssociation study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia.
AbstractThe glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia.
We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia. The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area.
We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 x 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets.
We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
4Cell. Physiol. Biochem. 2007 -1 20: 687-702
PMID17982252
TitleMolecular mechanisms of schizophrenia.
Abstractschizophrenia is a complex disorder, where family, twin and adoption studies have been demonstrating a high heritability of the disease and that this disease is not simply defined by several major genes but rather evolves from addition or potentiation of a specific cluster of genes, which subsequently determines the genetic vulnerability of an individual. Linkage and association studies suggest that a genetic vulnerablility, is not forcefully leading to the disease since triggering factors and environmental influences, i.e. birth complications, drug abuse, urban background or time of birth have been identified. This has lead to the assumption that schizophrenia is not only a genetically defined static disorder but a dynamic process leading to dysregulation of multiple pathways. There are several different hypothesis based on several facets of the disease, some of them due to the relatively well-known mechanisms of therapeutic agents. The most widely considered neurodevelopmental hypothesis of schizophrenia integrates environmental influences and causative genes. The dopamine hypothesis of schizophrenia is based on the fact that all common treatments involve antidopaminergic mechanisms and genes such as DRD2, DRD3, DARPP-32, BDNF or COMT are closely related to dopaminergic system functioning. The glutamatergic hypothesis of schizophrenia lead recently to a first successful mGlu2/3 receptor agonistic drug and is underpinned by significant findings in genes regulating the glutamatergic system (SLC1A6, SLC1A2 GRIN1, GRIN2A, GRIA1, NRG1, ErbB4, DTNBP1, DAAO, G72/30, GRM3). Correspondingly, GABA has been proposed to modulate the pathophysiology of the disease which is represented by the involvement of genes like GABRA1, GABRP, GABRA6 and Reelin. Moreover, several genes implicating immune, signaling and networking deficits have been reported to be involved in the disease, i.e. DISC1, RGS4, PRODH, DGCR6, ZDHHC8, DGCR2, Akt, CREB, IL-1B, IL-1RN, IL-10, IL-1B. However, molecular findings suggest that a complex interplay between receptors, kinases, proteins and hormones is involved in schizophrenia. In a unifying hypothesis, different cascades merge into another that ultimately lead to the development of symptoms adherent to schizophrenic disorders.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
5Cell. Physiol. Biochem. 2007 -1 20: 687-702
PMID17982252
TitleMolecular mechanisms of schizophrenia.
Abstractschizophrenia is a complex disorder, where family, twin and adoption studies have been demonstrating a high heritability of the disease and that this disease is not simply defined by several major genes but rather evolves from addition or potentiation of a specific cluster of genes, which subsequently determines the genetic vulnerability of an individual. Linkage and association studies suggest that a genetic vulnerablility, is not forcefully leading to the disease since triggering factors and environmental influences, i.e. birth complications, drug abuse, urban background or time of birth have been identified. This has lead to the assumption that schizophrenia is not only a genetically defined static disorder but a dynamic process leading to dysregulation of multiple pathways. There are several different hypothesis based on several facets of the disease, some of them due to the relatively well-known mechanisms of therapeutic agents. The most widely considered neurodevelopmental hypothesis of schizophrenia integrates environmental influences and causative genes. The dopamine hypothesis of schizophrenia is based on the fact that all common treatments involve antidopaminergic mechanisms and genes such as DRD2, DRD3, DARPP-32, BDNF or COMT are closely related to dopaminergic system functioning. The glutamatergic hypothesis of schizophrenia lead recently to a first successful mGlu2/3 receptor agonistic drug and is underpinned by significant findings in genes regulating the glutamatergic system (SLC1A6, SLC1A2 GRIN1, GRIN2A, GRIA1, NRG1, ErbB4, DTNBP1, DAAO, G72/30, GRM3). Correspondingly, GABA has been proposed to modulate the pathophysiology of the disease which is represented by the involvement of genes like GABRA1, GABRP, GABRA6 and Reelin. Moreover, several genes implicating immune, signaling and networking deficits have been reported to be involved in the disease, i.e. DISC1, RGS4, PRODH, DGCR6, ZDHHC8, DGCR2, Akt, CREB, IL-1B, IL-1RN, IL-10, IL-1B. However, molecular findings suggest that a complex interplay between receptors, kinases, proteins and hormones is involved in schizophrenia. In a unifying hypothesis, different cascades merge into another that ultimately lead to the development of symptoms adherent to schizophrenic disorders.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
6Biol. Psychiatry 2008 Jul 64: 89-97
PMID18191109
TitleShared gene expression alterations in schizophrenia and bipolar disorder.
Abstractschizophrenia and bipolar disorder together affect approximately 2.5% of the world population, and their etiologies are thought to involve multiple genetic variants and environmental influences. The analysis of gene expression patterns in brain may provide a characteristic signature for each disorder.
RNA samples from the dorsolateral prefrontal cortex (Brodmann area 46) consisting of individuals with schizophrenia (SZ), bipolar disorder (BPD), and control subjects were tested on the Codelink Human 20K Bioarray platform. Selected transcripts were validated by quantitative real-time polymerase chain reaction (PCR). The strong effects of age, gender, and pH in the analysis of differential gene expression were controlled by analysis of covariance (ANCOVA). Criteria for differential gene expression were 1) a gene was significantly dysregulated in both BPD and SZ compared with control subjects and 2) significant in ANCOVA analysis with samples that have a pH above the median of the sample.
A list of 78 candidate genes passed these two criteria in BPD and SZ and was overrepresented for functional categories of nervous system development, immune system development and response, and cell death. Five dysregulated genes were confirmed with quantitative Q-PCR in both BPD and SZ. Three genes were highly enriched in brain expression (AGXT2L1, SLC1A2, and TU3A). The distribution of AGXT2L1 expression in control subjects versus BPD and SZ was highly significant (Fisher's Exact Test, p < 10(-06)).
These results suggest a partially shared molecular profile for both disorders and offer a window into discovery of common pathophysiology that might lead to core treatments.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
7Neurosci. Lett. 2009 Oct 463: 223-7
PMID19660525
TitleNo genetic association between the SLC1A2 gene and Japanese patients with schizophrenia.
AbstractGlutamatergic dysfunction may be a pathophysiological feature in the brains of schizophrenic patients. In addition to glutamate receptors, excitatory amino acid transporters (EAATs) have received much attention because they directly affect glutamatergic neurotransmission by excluding excessive glutamate from the synaptic cleft. Among these, EAAT2 (also known as solute carrier family 1, member 2; SLC1A2) has been widely studied in schizophrenia pathophysiology. During the last decade, we reported significant decreases in EAAT2 mRNA expression in the prefrontal cortex and parahippocampal gyrus in postmortem schizophrenic brains. Previously, a haplotype association between SLC1A2 and Japanese patients with schizophrenia was reported. In this study, we reinvestigated the association between SLC1A2 and schizophrenia by performing a case-control association study with twice as many subjects (401 cases and 407 controls) as compared to a previous study, and especially focused on the region where a previous association with schizophrenia had been shown. Our current results failed to show any significant association with schizophrenia in individual single nucleotide polymorphisms (SNPs), two- and three-SNP-based haplotypes, or with possible pairwise haplotype analysis. SCL1A2 appears not to be a genetic risk factor for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
8Neurosci. Lett. 2009 Oct 463: 223-7
PMID19660525
TitleNo genetic association between the SLC1A2 gene and Japanese patients with schizophrenia.
AbstractGlutamatergic dysfunction may be a pathophysiological feature in the brains of schizophrenic patients. In addition to glutamate receptors, excitatory amino acid transporters (EAATs) have received much attention because they directly affect glutamatergic neurotransmission by excluding excessive glutamate from the synaptic cleft. Among these, EAAT2 (also known as solute carrier family 1, member 2; SLC1A2) has been widely studied in schizophrenia pathophysiology. During the last decade, we reported significant decreases in EAAT2 mRNA expression in the prefrontal cortex and parahippocampal gyrus in postmortem schizophrenic brains. Previously, a haplotype association between SLC1A2 and Japanese patients with schizophrenia was reported. In this study, we reinvestigated the association between SLC1A2 and schizophrenia by performing a case-control association study with twice as many subjects (401 cases and 407 controls) as compared to a previous study, and especially focused on the region where a previous association with schizophrenia had been shown. Our current results failed to show any significant association with schizophrenia in individual single nucleotide polymorphisms (SNPs), two- and three-SNP-based haplotypes, or with possible pairwise haplotype analysis. SCL1A2 appears not to be a genetic risk factor for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
9Front Behav Neurosci 2010 -1 4: 32
PMID20589092
TitleEthanol and phencyclidine interact with respect to nucleus accumbens dopamine release: differential effects of administration order and pretreatment protocol.
AbstractExecutive dysfunction is a common symptom among alcohol-dependent individuals. Phencyclidine (PCP) injection induces dysfunction in the prefrontal cortex of animals but little is known about how PCP affects the response to ethanol. Using the in vivo microdialysis technique in male Wistar rats, we investigated how systemic injection of 5 mg/kg PCP would affect the dopamine release induced by local infusion of 300 mM ethanol into the nucleus accumbens. PCP given 60 min before ethanol entirely blocked ethanol-induced dopamine release. However, when ethanol was administered 60 min before PCP, both drugs induced dopamine release and PCP's effect was potentiated by ethanol (180% increase vs 150%). To test the role of prefrontal cortex dysfunction in ethanol reinforcement, animals were pretreated for 5 days with 2.58 mg/kg PCP according to previously used 'PFC hypofunction protocols'. This, however, did not change the relative response to PCP or ethanol compared to saline-treated controls. qPCR illustrated that this low PCP dose did not significantly change expression of glucose transporters Glut1 (SLC2A1) or Glut3 (SLC2A3), monocarboxylate transporter MCT2 (SLC16A7), glutamate transporters GLT-1 (SLC1A2) or GLAST (SLC1A3), the immediate early gene Arc (Arg3.1) or GABAergic neuron markers GAT-1 (SLC6A1) and parvalbumin. Therefore, we concluded that PCP at a dose of 2.58 mg/kg for 5 days did not induce hypofunction in Wistar rats. However, PCP and ethanol do have overlapping mechanisms of action and these drugs differentially affect mesolimbic dopaminergic transmission depending on the order of administration.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
10Behav. Brain Res. 2013 Nov 257: 118-28
PMID24076151
TitleForebrain gene expression predicts deficits in sensorimotor gating after isolation rearing in male rats.
AbstractCompared to socially housed (SH) rats, adult isolation-reared (IR) rats exhibit phenotypes relevant to schizophrenia (SZ), including reduced prepulse inhibition (PPI) of startle. PPI is normally regulated by the medial prefrontal cortex (mPFC) and nucleus accumbens (NAC). We assessed PPI, auditory-evoked local field potentials (LFPs) and expression of seven PPI- and SZ-related genes in the mPFC and NAC, in IR and SH rats. Buffalo (BUF) rats were raised in same-sex groups of 2-3 (SH) or in isolation (IR). PPI was measured early (d53) and later in adulthood (d74); LFPs were measured approximately on d66. Brains were processed for RT-PCR measures of mPFC and NAC expression of Comt, Erbb4, Grid2, Ncam1, SLC1A2, Nrg1 and Reln. Male IR rats exhibited PPI deficits, most pronounced at d53; male and female IR rats had significantly elevated startle magnitude on both test days. Gene expression levels were not significantly altered by IR. PPI levels (d53) were positively correlated with mPFC expression of several genes, and negatively correlated with NAC expression of several genes, in male IR but not SH rats. Late (P90) LFP amplitudes correlated significantly with expression levels of 6/7 mPFC genes in male rats, independent of rearing. After IR that disrupts early adult PPI in male BUF rats, expression levels of PPI- and SZ-associated genes in the mPFC correlate positively with PPI, and levels in the NAC correlate negatively with PPI. These results support the model that specific gene-behavior relationships moderate the impact of early-life experience on SZ-linked behavioral and neurophysiological markers.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
11Neuropharmacology 2013 Dec 75: 38-46
PMID23810830
TitleCoupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats.
AbstractAfter neonatal ventral hippocampal lesions (NVHLs), adult rats exhibit evidence of neural processing deficits relevant to schizophrenia, including reduced prepulse inhibition (PPI) of acoustic startle and impaired sensory processing. In intact rats, the regulation of PPI by the ventral hippocampus (VH) is mediated via interactions with medial prefrontal cortex (mPFC) and nucleus accumbens (NAC). We assessed PPI, auditory-evoked responses and expression of 7 schizophrenia-related genes in mPFC and NAC, in adult rats after sham- or real NVHLs.
Male inbred Buffalo (BUF) rat pups (d7; n=36) received either vehicle or ibotenic acid infusion into the VH. PPI and auditory-evoked dentate gyrus local field potentials (LFPs) were measured on d56 and d66, respectively. Brains were processed for RT-PCR measures of mPFC and NAC Comt, Erbb4, Grid2, Ncam1, SLC1A2, Nrg1 and Reln.
NVHL rats exhibited significant deficits in PPI (p=0.005) and LFPs (p<0.015) proportional to lesion size. Sham vs. NVHL rats did not differ in gene expression levels in mPFC or NAC. As we previously reported, multiple gene expression levels were highly correlated within- (mean r's?0.5), but not across-brain regions (mean r's?0). However, for three genes--Comt, SLC1A2 and Ncam1--after NVHLs, expression levels became significantly correlated, or "coupled," across the mPFC and NAC (p's<0.03, 0.002 and 0.05, respectively), and the degree of "coupling" increased with VH lesion size.
After NVHLs that disrupt PPI and auditory processing, specific gene expression levels suggest an abnormal functional coupling of the mPFC and NAC. This model of VH-mPFC-NAC network dysfunction after NVHLs may have implications for understanding the neural basis for PPI- and related sensory processing deficits in schizophrenia patients.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
12Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014 Dec 165B: 635-46
PMID25209194
TitleSynergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness.
AbstractLiterature indicates key role of glutamatergic pathway genes in antipsychotic response among schizophrenia patients. However, molecular basis of their underlying role in antipsychotic response remained unexplained. Thus, to unravel their molecular underpinnings, we sought to investigate interactions amongst GRM3, SLC1A1, SLC1A2, SLC1A3, SLC1A4 gene polymorphisms with drug response in south Indian schizophrenia patients. We genotyped 48 SNPs from these genes in 423 schizophrenia patients stratified into low and high severity of illness groups. The SNPs and haplotypic combinations of associated SNPs were examined for their association with antipsychotic response. Multifactor-dimensionality-reduction was further used to explore gene-gene interaction among these SNPs and 53 SNPs from previously studied genes (BDNF, RGS4, SLC6A3, PI4KA, and PIP4K2A). Single SNP and haplotype analyses revealed no significant association with drug response irrespective of severity of illness. Gene-gene interaction analyses yielded promising leads, including an observed synergistic effect between PI4KA_rs165854 and GRM3_rs1468412 polymorphisms and incomplete antipsychotic response in schizophrenia patients with low severity of illness (OR = 12.4; 95%CI = 3.69-41.69). Further, this interaction was also observed in atypical monotherapy (n = 355) and risperidone (n = 260) treatment subgroups (OR = 11.21; 95%CI = 3.30-38.12 and OR = 13.5; 95%CI = 3.03-121.61 respectively). PI4KA is known to be involved in the biosynthesis of phosphatidylinositol-4, 5-bisphosphate which regulates exocytotic fusion of synaptic vesicles (glutamate, dopamine) with the plasma membrane and regulates duration of signal transduction of GPCRs. Whereas GRM3 regulates glutamate and dopamine transmission. Present findings indicate that PI4KA and GRM3 polymorphisms have potential to jointly modulate antipsychotic response. These results warrant additional replication studies to shed further light on these interactions.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
13Schizophr. Res. 2015 Dec 169: 128-34
PMID26459047
TitleCommon variants in SLC1A2 and schizophrenia: Association and cognitive function in patients with schizophrenia and healthy individuals.
AbstractSLC1A2 is reported to be responsible for the majority of glutamate uptake, which has a crucial role in neural development and synaptic plasticity, and a disturbance in glutamatergic transmission has been suggested to be involved in the pathophysiology of schizophrenia (SCZ) and cognition. To evaluate the relationship of common variants within SLC1A2 with SCZ and cognition in Han Chinese, 28 tag SNPs were genotyped in the discovery stage, which included 1117 cases and 2289 controls; significantly associated markers were genotyped in the replication stage with 2128 cases and 3865 controls. The rs4354668 SNP was identified to be significantly associated with SCZ in both datasets, and a similar pattern was also observed in the two-stage study on conducting imputation and haplotype association analyses. In addition, significant associations between the rs4354668 SNP and cognition were observed when processing the perseverative error of the Wisconsin Card Sorting Test in patients and controls. Our results provide supportive evidence for an effect of SLC1A2 on the etiology of SCZ, suggesting that genetic variation (rs4354668 and its haplotypes) in SLC1A2 may be involved in impaired executive function, which adds to the current body of knowledge regarding the risk of SCZ and the impairment of cognitive performance.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
14Eur. J. Hum. Genet. 2015 Sep 23: 1200-6
PMID25406999
TitleAssociation of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia.
AbstractThe SLC1A2 gene encodes the excitatory amino acid transporter 2 (EAAT2). Glutamate is the major mediator of excitatory neurotransmission and EAAT2 is responsible for clearing the neurotransmitter from the synaptic cleft. Genetic variation in SLC1A2 has been implicated in a range of neurological and neuropsychiatric conditions including schizophrenia (SZ), autism and in core phenotypes of bipolar disorder (BD). The coding and putative regulatory regions of SLC1A2 gene were screened for variants using high resolution melting or sequenced in 1099 or in 32 BD subjects. Thirty-two variants were detected in the SLC1A2 gene. Fifteen potentially etiological variants were selected for genotyping in 1099 BD and 1095 control samples. Five amino acid changing variants were also genotyped in 630 participants suffering from SZ. None of the variants were found to be associated with BD or SZ or with the two diseases combined. However, two recurrent missense variants (rs145827578:G>A, p.(G6S); rs199599866:G>A, p.(R31Q)) and one recurrent 5'-untranslated region (UTR) variant (ss825678885:G>T) were detected in cases only. Combined analysis of the recurrent-case-only missense variants and of the case-only missense and 5'-UTR variants showed nominal evidence for association with the combined diseases (Fisher's P=0.019 and 0.0076). These findings are exploratory in nature and await replication in larger cohorts, however, they provide intriguing evidence that potentially functional rare variants in the SLC1A2 gene may confer susceptibility to psychotic disorders.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
15Behav. Brain Res. 2016 Apr 302: 115-21
PMID26778785
TitleSensorimotor gating deficits are inheritable in an isolation-rearing paradigm in rats.
AbstractEarly life experience is a key etiological factor of neuropsychiatric dysfunctions and is associated with developmental origins. Impaired prepulse inhibition (PPI) following an acoustic startle response is acknowledged as a cardinal characteristic in socially deprived weanling rats, which has been employed to investigate the underlying mechanisms of sensorimotor gating abnormalities in certain mental disorders, including schizophrenia. Because impaired PPI is a postnatal malfunction, it is interesting to examine whether it can be passed to the next generation. Isolation-rearing (IR) rats had been socially deprived since weaning, which mated with social rearing rats. Next, the offspring of IR rats were reared in a normal social environment. Locomotion, PPI, monoamines, and genes in schizophrenia-relevant brain areas [medial prefrontal cortex (mPFC) and hippocampus] were later measured. To this end, we observed that the next generation of IR offspring rats appeared with impaired PPI in which the PPI deficit can be observed as early as three weeks after birth. The third generation also exhibited lower levels of dopamine and serotonin in the mPFC and hippocampus; however, higher levels of both monoamines were measured in the striatum. Finally, SLC1A2 was more highly expressed in the mPFC of the third generation male rats. The present study demonstrates a transgenerational inheritance of IR-induced character and may help to elucidate the underlying pathoetiology of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics