1Mol. Psychiatry 2011 Mar 16: 321-32
PMID20195266
TitleGenomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs.
AbstractUnderstanding individual differences in the susceptibility to metabolic side effects as a response to antipsychotic therapy is essential to optimize the treatment of schizophrenia. Here, we perform genomewide association studies (GWAS) to search for genetic variation affecting the susceptibility to metabolic side effects. The analysis sample consisted of 738 schizophrenia patients, successfully genotyped for 492K single nucleotide polymorphisms (SNPs), from the genomic subsample of the Clinical Antipsychotic Trial of Intervention Effectiveness study. Outcomes included 12 indicators of metabolic side effects, quantifying antipsychotic-induced change in weight, blood lipids, glucose and hemoglobin A1c, blood pressure and heart rate. Our criterion for genomewide significance was a pre-specified threshold that ensures, on average, only 10% of the significant findings are false discoveries. A total of 21 SNPs satisfied this criterion. The top finding indicated that a SNP in Meis homeobox 2 (MEIS2) mediated the effects of risperidone on hip circumference (q=0.004). The same SNP was also found to mediate risperidone's effect on waist circumference (q=0.055). Genomewide significant finding were also found for SNPs in PRKAR2B, GPR98, FHOD3, RNF144A, ASTN2, SOX5 and ATF7IP2, as well as in several intergenic markers. PRKAR2B and MEIS2 both have previous research indicating metabolic involvement, and PRKAR2B has previously been shown to mediate antipsychotic response. Although our findings require replication and functional validation, this study shows the potential of GWAS to discover genes and pathways that potentially mediate adverse effects of antipsychotic medication.
SCZ Keywordsschizophrenia
2PLoS ONE 2013 -1 8: e53042
PMID23301017
TitleDiscovery, validation and characterization of Erbb4 and Nrg1 haplotypes using data from three genome-wide association studies of schizophrenia.
Abstractschizophrenia is one of the most common and complex neuropsychiatric disorders, which is contributed both by genetic and environmental exposures. Recently, it is shown that NRG1-mediated ErbB4 signalling regulates many important cellular and molecular processes such as cellular growth, differentiation and death, particularly in myelin-producing cells, glia and neurons. Recent association studies have revealed genomic regions of NRG1 and ERBB4, which are significantly associated with risk of developing schizophrenia; however, inconsistencies exist in terms of validation of findings between distinct populations. In this study, we aim to validate the previously identified regions and to discover novel haplotypes of NRG1 and ERBB4 using logistic regression models and Haploview analyses in three independent datasets from GWAS conducted on European subjects, namely, CATIE, GAIN and nonGAIN. We identified a significant 6-kb block in ERBB4 between chromosome locations 212,156,823 and 212,162,848 in CATIE and GAIN datasets (p = 0.0206 and 0.0095, respectively). In NRG1, a significant 25-kb block, between 32,291,552 and 32,317,192, was associated with risk of schizophrenia in all CATIE, GAIN, and nonGAIN datasets (p = 0.0005, 0.0589, and 0.0143, respectively). Fine mapping and FastSNP analysis of genetic variation located within significantly associated regions proved the presence of binding sites for several transcription factors such as SRY, SOX5, CEPB, and ETS1. In this study, we have discovered and validated haplotypes of ERBB4 and NRG1 in three independent European populations. These findings suggest that these haplotypes play an important role in the development of schizophrenia by affecting transcription factor binding affinity.
SCZ Keywordsschizophrenia
3Eur Arch Psychiatry Clin Neurosci 2014 Jun 264: 297-309
PMID24287731
TitleGene expression in superior temporal cortex of schizophrenia patients.
AbstractWe investigated gene expression pattern obtained from microarray data of 10 schizophrenia patients and 10 control subjects. Brain tissue samples were obtained postmortem; thus, the different ages of the patients at death also allowed a study of the dynamic behavior of the expression patterns over a time frame of many years. We used statistical tests and dimensionality reduction methods to characterize the subset of genes differentially expressed in the two groups. A set of 10 genes were significantly downregulated, and a larger set of 40 genes were upregulated in the schizophrenia patients. Interestingly, the set of upregulated genes includes a large number of genes associated with gene transcription (zinc finger proteins and histone methylation) and apoptosis. We furthermore identified genes with a significant trend correlating with age in the control (MLL3) or the schizophrenia group (SOX5, CTRL). Assessments of correlations of other genes with the disorder (RRM1) or with the duration of medication could not be resolved, because all patients were medicated. This hypothesis-free approach uncovered a series of genes differentially expressed in schizophrenia that belong to a number of distinct cell functions, such as apoptosis, transcriptional regulation, cell motility, energy metabolism and hypoxia.
SCZ Keywordsschizophrenia