Pulmonary Arterial Hypertension KnowledgeBase (PAHKB)
PAHKB
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

6774

Name

STAT3

Synonymous

APRF|HIES;signal transducer and activator of transcription 3 (acute-phase response factor);STAT3;signal transducer and activator of transcription 3 (acute-phase response factor)

Definition

DNA-binding protein APRF|acute-phase response factor|signal transducer and activator of transcription 3

Position

17q21.31

Gene type

protein-coding

Source

Count: STAT3; 6774

Sentence

Abstract

Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway.

Dysregulated expression of bone morphogenetic protein receptor type II (BMPR2) is a pathogenetic hallmark of pulmonary hypertension. Downregulation of BMPR2 protein but not mRNA has been observed in multiple animal models mimicking the disease, indicating a posttranscriptional mechanism of regulation. Because microRNAs (miRNAs) regulate gene expression mainly through inhibition of target gene translation, we hypothesized that miRNAs may play a role in the modulation of BMPR2. Performing a computational algorithm on the BMPR2 gene, several miRNAs encoded by the miRNA cluster 17/92 (miR-17/92) were retrieved as potential regulators. Ectopic overexpression of miR-17/92 resulted in a strong reduction of the BMPR2 protein, and a reporter gene system showed that BMPR2 is directly targeted by miR-17-5p and miR-20a. By stimulation experiments, we found that the miR-17/92 cluster is modulated by interleukin (IL)-6, a cytokine involved in the pathogenesis of pulmonary hypertension. Because IL-6 signaling is mainly mediated by STAT3 (signal transducer and activator of transcription 3), the expression of STAT3 was knocked down by small interfering RNA, which abolished the IL-6-mediated expression of miR-17/92. Consistent with these data, we found a highly conserved STAT3-binding site in the promoter region of the miR-17/92 gene (C13orf25). Promoter studies confirmed that IL-6 enhances transcription of C13orf25 through this distinct region. Finally, we showed that persistent activation of STAT3 leads to repressed protein expression of BMPR2. Taken together, we describe here a novel STAT3-miR-17/92-BMPR2 pathway, thus providing a mechanistic explanation for the loss of BMPR2 in the development of pulmonary hypertension.

Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension.

BACKGROUND: Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype required the activation of a prosurvival transcription factor like signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T cell (NFAT). Because these factors are implicated in several physiological processes, their inhibition in PAH patients could be associated with detrimental effects. Therefore, a better understanding of the mechanism accounting for their expression/activation in PAH pulmonary artery smooth muscle cells is of great therapeutic interest. METHODS AND RESULTS: Using multidisciplinary and translational approaches, we demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the expression of both NFATc2 and the oncoprotein kinase Pim1, which trigger NFATc2 activation. Because Pim1 expression correlates with the severity of PAH in humans and is confined to the PAH pulmonary artery smooth muscle cell, Pim1 was identified as an attractive therapeutic target for PAH. Indeed, specific Pim1 inhibition in vitro decreases pulmonary artery smooth muscle cell proliferation and promotes apoptosis, all of which are sustained by NFATc2 inhibition. In vivo, tissue-specific inhibition of Pim1 by nebulized siRNA reverses monocrotaline-induced PAH in rats, whereas Pim1 knockout mice are resistant to PAH development. CONCLUSION: We demonstrated for the first time that inhibition of the inappropriate activation of STAT3/Pim1 axis is a novel, specific, and attractive therapeutic strategy to reverse PAH.

')