Loading

Dataset View [GSE44183]

SeriesGSE44183
TitleGenetic Programs in Human and Mouse Early Embryos Revealed by Single-Cell RNA-Sequencing
Year2013
CountryUSA
ArticleFan G,Horvath S,Liu JY,Sun YE,Cheng L,Zeng Q,Liu Z,Feng Y,Jiang CY,Cai L,Cai C,Huang K,Xue Z.Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing.Nature.2013 Aug 29
PMID23892778
Bio ProjectBioProject: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA189204
SraSRA: http://www.ncbi.nlm.nih.gov/sra?term=SRP018525
Overall Desginsingle-cell RNA-seq of human and mouse blastomeres
SummaryMammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. Through single-cell RNA-sequencing (RNA-seq), we report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos. Based on single nucleotide variants (SNVs) in blastomere mRNAs and paternal-specific SNPs, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25-53%). By weighted gene co-expression network analysis (WGCNA), we find that each developmental stage can be concisely delineated by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation, and metabolism in a step-wise fashion from cleavage to morula. Cross-species comparisons reveal that the majority of human stage-specific modules (7 out of 9) are remarkably preserved, only to diverge in developmental specificity and timing in mice. We further identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely key players in driving mammalian preimplantation development. Collectively, we demonstrate that mammalian preimplantation development is orchestrated by evolutionarily conserved genetic programs that diverge in developmental timing. Our results provide a valuable resource to dissect gene regulatory mechanism underlying progressive development of early mammalian embryos.
Experimental ProtocolTargeted enrichment was performed with Agilent 50M kit; Libraries were prepared using an Illumina paired-end DNA sample prep kit (Illumina) following the manufacturer's protocols
RNA was isolated from single cells or single morula embryos and amplified as previously described (Tang et al., 2010, Nat Protoc); Library construction was performed following Illumina manufacturer suggestions.
Data processingLibrary strategy: Exome-Seq; Raw reads from the Illumina HiSeq2000 were mapped to the hg19 genome using default parameters in BWA; hg19; exome.wig: wiggle files represent the read depth every 10bp along the hg19 genome
Raw reads from the Illumina HiSeq2000 were mapped to the hg19 genome using default parameters in BWA; Mapped transcripts reads were transformed using the reads per kilobase per million (RPKM) metric; Genes with low expression in all stages (average RPKM<0.5) were filtered out, followed by quantile normalization.; Genome_build: hg19; Supplementary_files_format_and_content: human_expression_mat.txt: matrix listing normalized RPKM
PlatformGPL11154;GPL13112
Public OnPublic on Jul 29 2013

Cell Groups

Differential Expression Gene List

KEGG GO Others   

Gene SymbolEnsembl IDFDR
TIMM8AENSG000001269530.00923746673586585
KIAA0391ENSG000001008900.00938803618084075
BASP1ENSG000001767880.00938803618084075
G3BP2ENSG000001387570.00943362222644412
MYCENSG000001369970.00943362222644412
C18orf8ENSG000001414520.00950655930108753
YES1ENSG000001761050.00950655930108753
DPPA4ENSG000001215700.00950655930108753
C14orf1560.00951356998498858
RPL27ENSG000001314690.00951356998498858
Displaying 281-290 of 320 results.