Loading

Cell View

Cell Information

  U87 human glioma cells

Overall DesignA microfluidic device that pairs sequence-barcoded mRNA capture beads with individual cells was used to barcode cDNA from individual cells which was then pre-amplified by in vitro transcription in a pool and converted into an Illumina RNA-Seq library. Libraries were generated from ~600 individual cells in parallel and extensive analysis was done on 396 cells from the U87 and MCF10a cell lines and from ~500 individual cells with extensive analysis on 247 cells from the U87 and WI-38 cell lines. Sequencing was done on the 3'-end of the transcript molecules. The first read contains cell-identifying barcodes that were present on the capture bead and the second read contains a unique molecular identifier (UMI) barcode, a lane-identifying barcode, and then the sequence of the transcript.
SummarySingle cell transcriptomics has emerged as a powerful approach to dissecting phenotypic heterogeneity in complex, unsynchronized cellular populations. However, many important biological questions demand quantitative analysis of large numbers of individual cells. Hence, new tools are urgently needed for efficient, inexpensive, and parallel manipulation of RNA from individual cells. We report a simple microfluidic platform for trapping single cell lysates in sealed, picoliter microwells capable of “printing” RNA on glass or capturing RNA on polymer beads. To demonstrate the utility of our system for single cell transcriptomics, we developed a highly scalable technology for genome-wide, single cell RNA-Seq. The current implementation of our device is pipette-operated, profiles hundreds of individual cells in parallel with library preparation costs of ~$0.10-$0.20/cell, and includes five lanes for simultaneous experiments. We anticipate that this system will ultimately serve as a general platform for large-scale single cell transcriptomics, compatible with both imaging and sequencing readouts.type = Expression profiling by high throughput sequencing
Dataset viewGSE66357
PMID26047807

Samples in U87 human glioma cells

Displaying 31-40 of 138 results.
SeriesSampleInstrumentOrganismTitleCell Source
GSE66357GSM1683219Illumina NextSeq 500Homo sapiensPS041-2_R2_0_16U87 human glioma cells
GSE66357GSM1683220Illumina NextSeq 500Homo sapiensPS041-2_R2_0_178U87 human glioma cells
GSE66357GSM1683221Illumina NextSeq 500Homo sapiensPS041-2_R2_0_179U87 human glioma cells
GSE66357GSM1683222Illumina NextSeq 500Homo sapiensPS041-2_R2_0_189U87 human glioma cells
GSE66357GSM1683223Illumina NextSeq 500Homo sapiensPS041-2_R2_0_239U87 human glioma cells
GSE66357GSM1683224Illumina NextSeq 500Homo sapiensPS041-2_R2_0_242U87 human glioma cells
GSE66357GSM1683225Illumina NextSeq 500Homo sapiensPS041-2_R2_0_249U87 human glioma cells
GSE66357GSM1683226Illumina NextSeq 500Homo sapiensPS041-2_R2_0_267U87 human glioma cells
GSE66357GSM1683227Illumina NextSeq 500Homo sapiensPS041-2_R2_0_278U87 human glioma cells
GSE66357GSM1683228Illumina NextSeq 500Homo sapiensPS041-2_R2_0_289U87 human glioma cells

Gene rank in U87 human glioma cells

Displaying 61-70 of 18975 results.
Rank orderGene SymbolEnsembl ID
61S100A11ENSG00000163191
62RPS18ENSG00000096150
63NUCKS1ENSG00000069275
64RPL6ENSG00000089009
65HSP90AA1ENSG00000080824
66H3F3AENSG00000163041
67UBA52ENSG00000221983
68ENO1ENSG00000074800
69TPI1ENSG00000111669
70RPS9ENSG00000170889