Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

23136

Name

EPB41L3

Synonymous

4.1B|DAL-1|DAL1;erythrocyte membrane protein band 4.1-like 3;EPB41L3;erythrocyte membrane protein band 4.1-like 3

Definition

band 4.1-like protein 3|differentially expressed in adenocarcinoma of the lung protein 1

Position

18p11.32

Gene type

protein-coding

Title

Abstract

Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas.

Meningiomas are common nervous system tumors, whose molecular pathogenesis is poorly understood. To date, the most frequent genetic alteration detected in these tumors is loss of heterozygosity (LOH) on chromosome 22q. This finding led to the identification of the neurofibromatosis 2 (NF2) tumor suppressor gene on 22q12, which is inactivated in 40% of sporadic meningiomas. The NF2 gene product, merlin (or schwannomin), is a member of the protein 4.1 family of membrane-associated proteins, which also includes ezrin, radixin and moesin. Recently, we identified another protein 4.1 gene, DAL-1 (differentially expressed in adenocarcinoma of the lung) located on chromosome 18p11.3, which is lost in approximately 60% of non-small cell lung carcinomas, and exhibits growth-suppressing properties in lung cancer cell lines. Given the homology between DAL-1 and NF2 and the identification of significant LOH in the region of DAL-1 in lung, breast and brain tumors, we investigated the possibility that loss of expression of DAL-1 was important for meningioma development. In this report, we demonstrate DAL-1 loss in 60% of sporadic meningiomas using LOH, RT-PCR, western blot and immunohistochemistry analyses. Analogous to merlin, we show that DAL-1 loss is an early event in meningioma tumorigenesis, suggesting that these two protein 4.1 family members are critical growth regulators in the pathogenesis of meningiomas. Furthermore, our work supports the emerging notion that membrane-associated alterations are important in the early stages of neoplastic transformation and the study of such alterations may elucidate the mechanism of tumorigenesis shared by other tumor types.

Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer.

The tumor suppressor gene TSLC1, which we recently identified in human non-small cell lung cancer, encodes a membrane glycoprotein of the immunoglobulin superfamily. Here, we report that TSLC1 directly associates with DAL-1, a gene product of another lung tumor suppressor belonging to the protein 4.1 family. TSLC1 additionally interacts with the actin filament through DAL-1 at the cell-cell attached site where the complex formation of TSLC1 and DAL-1 is dependent on the integrity of actin cytoskeleton. Redistribution of both TSLC1 and DAL-1 to the newly generated membrane ruffling areas suggests that these proteins are also involved in cell motility accompanying the actin rearrangement. Furthermore, restoration of TSLC1 expression strongly suppressed the metastasis of a human non-small cell lung cancer cell line, A549, from the spleen to the liver in nude mice. These findings, together with frequent loss of their expression in lung cancers, suggest that TSLC1 and DAL-1 play a critical role in the same pathway involved in the suppression of lung tumor formation and metastasis.

Allele-specific loss of heterozygosity at the DAL-1/4.1B (EPB41L3) tumor-suppressor gene locus in the absence of mutation.

DAL-1/4.1B (EPB41L3)is a member of the protein 4.1 superfamily, which encompasses structural proteins that play important roles in membrane processes via interactions with actin, spectrin, and the cytoplasmic domains of integral membrane proteins. DAL-1/4.1B localizes within chromosomal region 18p11.3, which is affected by loss of heterozygosity (LOH) in various adult tumors. Reintroduction of this protein into DAL-1/4.1B-null lung and breast tumor cell lines significantly reduced the number of cells, providing functional evidence that this protein possesses a growth suppressor function not confined to a single cell type. For characterization of the mutational mechanisms responsible for loss of DAL-1/4.1B function in tumors, the exon-intron structure of DAL-1/4.1B was examined for mutations in 15 normal/tumor pairs of non-small cell lung carcinoma by single-strand conformation polymorphism analysis. These studies revealed that small intragenic mutations are uncommon in DAL-1/4.1B. Furthermore, LOH analysis on 129 informative early-stage breast tumors utilizing a new intragenic C/T single-nucleotide polymorphism in exon 14 revealed that LOH resulted in preferential retention of the C-containing allele, suggesting that allele-specific loss is occurring. These studies indicate that mechanisms such as imprinting or monoallelic expression in combination with loss of heterozygosity may be responsible for loss of the DAL-1/4.1B protein in early breast disease.

DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo.

DAL-1 (differentially expressed in adenocarcinoma of the lung)/4.1B is a tumor suppressor gene on human chromosome 18p11.3 whose expression is lost in >50% of primary non-small-cell lung carcinomas. Based on sequence similarity, DAL-1/4.1B has been assigned to the Protein 4.1 superfamily whose members interact with plasma membrane proteins through their N-terminal FERM (4.1/Ezrin/Radixin/Moesin) domain, and cytoskeletal components via their C-terminal SAB (spectrin-actin binding) region. Using the DAL-1/4.1B FERM domain as bait for yeast two-hybrid interaction cloning, we identified protein arginine N-methyltransferase 3 (PRMT3) as a specific DAL-1/4.1B-interacting protein. PRMT3 catalyses the post-translational transfer of methyl groups from S-adenosyl-L-methionine to arginine residues of proteins. Coimmunoprecipitation experiments using lung and breast cancer cell lines confirmed this interaction in mammalian cells in vivo. In vitro binding assays demonstrated that this was an interaction occurring via the C-terminal catalytic core domain of PRMT3. DAL-1/4.1B was determined not to be a substrate for PRMT3-mediated methylation but its presence inhibits the in vitro methylation of a glycine-rich and arginine-rich methyl-accepting protein, GST (glutathione-S-transferase-GAR (glycine- and arginine-rich), which contains 14 RGG consensus methylation sites. In addition, induced expression of DAL-1/4.1B in MCF-7 breast cancer cells showed that the DAL-1/4.1B protein significantly inhibits PRMT3 methylation of cellular substrates. These findings suggest that modulation of post-translational methylation may be an important mechanism through which DAL-1/4.1B affects tumor cell growth.

Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma.

Renal clear cell carcinoma (RCCC) is a malignant tumor with poor prognosis caused by the high incidence of metastasis to distal organs. Although metastatic RCCC cells frequently show aberrant cytoskeletal organization, the underlying mechanism has not been elucidated. DAL-1/4.1B is an actin-binding protein implicated in the cytoskeleton-associated processes, while its inactivation is frequently observed in lung and breast cancers and meningiomas, suggesting that 4.1B is a potential tumor suppressor. We studied a possible involvement of 4.1B in RCCCs and evaluated it as a clinical indicator. 4.1B protein was detected in the proximal convoluted tubules of human kidney, the presumed cell of origin of RCCC. On the other hand, loss or marked reduction of its expression was observed in 10 of 19 (53%) renal cell carcinoma (RCC) cells and 12 of 19 (63%) surgically resected RCCC by reverse transcription-PCR. Bisulfite sequencing or bisulfite SSCP analyses revealed that the 4.1B promoter was methylated in 9 of 19 (47%) RCC cells and 25 of 55 (45%) surgically resected RCCC, and inversely correlated with 4.1B expression (p < 0.0001). Aberrant methylation appeared to be a relatively early event because more than 40% of the tumors with pT1a showed hypermethylation. Furthermore, 4.1B methylation correlated with a nuclear grade (p = 0.017) and a recurrence-free survival (p = 0.0036) and provided an independent prognostic factor (p = 0.038, relative risk 10.5). These results indicate that the promoter methylation of the 4.1B is one of the most frequent epigenetic alterations in RCCC and could predict the metastatic recurrence of the surgically resected RCCC.

The tumor suppressor DAL-1/4.1B and protein methylation cooperate in inducing apoptosis in MCF-7 breast cancer cells.

BACKGROUND: DAL-1 (Differentially Expressed in Adenocarcinoma of the Lung)/4.1B is a member of the protein 4.1 superfamily that has been shown to suppress growth in lung, breast and brain tumor cells. In the case of the caspase-3 deficient MCF-7 breast cancer cells, this growth suppression has been shown to be partially mediated by the induction of apoptosis. However the exact mechanism of action of DAL-1/4.1B is unknown. Recently, protein arginine N-methyltransferase 3 (PRMT3) was identified as a DAL-1/4.1B interacting protein. Protein arginine methyltransferases (PRMTs) posttranslationally methylate the arginine residues of proteins, a modification which has been implicated in the regulation of multiple cellular processes including nuclear-cytoplasmic transport, signal transduction, and transcription. RESULTS: To investigate the role of protein methylation in cell death induced by DAL-1/4.1B, DAL-1/4.1B-inducible MCF-7 cells were examined for apoptosis and caspase activation in the absence and presence of the protein methylation inhibitor adenosine dialdehyde (AdOX). Flow cytometry analysis revealed that apoptosis was primarily associated with the activation of caspase 8, and inhibition of this activation blocked the ability of DAL-1/4.1B to induce cell death. CONCLUSION: These results suggest that protein methylation cooperates with DAL-1/4.1B-associated caspase 8-specific activation to induce apoptosis in breast cancer cells.

Frequent concomitant epigenetic silencing of the stress-responsive tumor suppressor gene CADM1, and its interacting partner DAL-1 in nasal NK/T-cell lymphoma.

Nasal NK/T-cell lymphoma (NL) is a rare but clinically important entity of lymphoma. Its preferential incidence in Orientals but not Caucasians suggests possible genetic predisposition. 11q deletion is common in NL, indicating certain tumor suppressor genes (TSGs) at this locus involved in its pathogenesis. We investigated the expression and methylation of an 11q23.2 TSG, CADM1 (or TSLC1), and its partner DAL-1 (or EPB41L3) in NL. Methylation and silencing of CADM1 were detected in 2 NL and 4 of 8 (50%) of non-Hodgkin lymphoma (NHL) cell lines, but not in normal NK cells and normal PBMC. Absence of CADM1 protein was also detected in NL cell lines. 5-aza-2-deoxycytidine (Aza) demethylation or genetic knockout of both DNMT1 and 3B genes restored CADM1 and DAL-1 expression. CADM1 methylation was further detected in 36 of 45 (80%) of NL tumors. Concomitantly, DAL-1 was epigenetically inactivated in NL cell lines and virtually all the tumors with methylated CADM1. A significant correlation between the methylation of both genes was found (p < 0.0001). Homozygous deletion of CADM1 was detected in only 3 of 18 (17%) of tumors. The stress-response of CADM1 was abolished when its promoter becomes methylated. Our results demonstrate a frequent, predominant epigenetic silencing of CADM1 and DAL-1 in NL, which likely play a synergic role in NL pathogenesis.

miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3.

Traditional research modes aim to find cancer-specific single therapeutic target. Recently, emerging evidence suggested that some micro-RNAs (miRNA) can function as oncogenes or tumor suppressors. miRNAs are single-stranded, small noncoding RNA genes that can regulate hundreds of downstream target genes. In this study, we evaluated the miRNA expression patterns in gastric carcinoma and the specific role of miR-223 in gastric cancer metastasis. miRNA expression signature was first analyzed by real-time PCR on 10 paired gastric carcinomas and confirmed in another 20 paired gastric carcinoma tissues. With the 2-fold expression difference as a cutoff level, we identified 22 differential expressed mature miRNAs. Sixteen miRNAs were upregulated in gastric carcinoma, including miR-223, miR-21, miR-23b, miR-222, miR-25, miR-23a, miR-221, miR-107, miR-103, miR-99a, miR-100, miR-125b, miR-92, miR-146a, miR-214 and miR-191, and six miRNAs were downregulated in gastric carcinoma, including let-7a, miR-126, miR-210, miR-181b, miR-197, and miR-30aa-5p. After examining these miRNAs in several human gastric originated cell lines, we found that miR-223 is overexpressed only in metastatic gastric cancer cells and stimulated nonmetastatic gastric cancer cells migration and invasion. Mechanistically, miR-223, induced by the transcription factor Twist, posttranscriptionally downregulates EPB41L3 expression by directly targeting its 3-untranslated regions. Significantly, overexpression of miR-223 in primary gastric carcinomas is associated with poor metastasis-free survival. These findings indicate a new regulatory mode, namely, specific miRNA, which is activated by its upstream transcription factor, could suppress its direct targets and lead to tumor invasion and metastasis.

')