General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 23513 |
Name | SCRIB |
Synonymous | CRIB1|SCRB1|SCRIB1|Vartul;scribbled planar cell polarity protein;SCRIB;scribbled planar cell polarity protein |
Definition | protein scribble homolog|scribbled homolog |
Position | 8q24.3 |
Gene type | protein-coding |
Title |
Abstract |
[hScrib: a potential novel tumor suppressor]. | Establishment and maintenance of epithelial cell polarity rely on finely tuned protein networks comprising cell surface molecules, cytoplasmic adaptors, and enzymes connected to the actin cytoskeleton. oncogenes and tumor suppressors promote cell proliferation and resistance to apoptosis and, in many cases, alter some of these molecular scaffolds, and profoundly affect the epithelial cytoarchitecture. Reciprocally, loss of central actors of epithelial polarity unleashes normally repressed signaling pathways and perturb the shape and functions of epithelial tissues. Among the newcomers impacting on epithelial integrity, Scribble is a scaffold protein of a remarkable importance that furthermore displays a tumor suppressing activity in Drosophila melanogaster. Together with Discs Large (Dlg) and Lethal Giant Larvae (Lgl), two known tumor suppressors, Scribble acts on the correct positioning of epithelial junctions required to organize functional epithelial sheets. Scribble, Dlg and Lgl proteins are well conserved during evolution at the molecular and subcellular level implying their potential role in cell polarity and tumorigenesis in humans. Recent findings on hScrib, the human orthologue of Scribble, are discussed here. |
The tumor suppressor Scrib interacts with the zyxin-related protein LPP, which shuttles between cell adhesion sites and the nucleus. | BACKGROUND: At sites of cell adhesion, proteins exist that not only perform structural tasks but also have a signaling function. Previously, we found that the Lipoma Preferred Partner (LPP) protein is localized at sites of cell adhesion such as focal adhesions and cell-cell contacts, and shuttles to the nucleus where it has transcriptional activation capacity. LPP is a member of the zyxin family of proteins, which contains five members: ajuba, LIMD1, LPP, TRIP6 and zyxin. LPP has three LIM domains (zinc-finger protein interaction domains) at its carboxy-terminus, which are preceded by a proline-rich pre-LIM region containing a number of protein interaction domains. RESULTS: To catch the role of LPP at sites of cell adhesion, we made an effort to identify binding partners of LPP. We found the tumor suppressor protein Scrib, which is a component of cell-cell contacts, as interaction partner of LPP. Human Scrib, which is a functional homologue of Drosophila scribble, is a member of the leucine-rich repeat and PDZ (LAP) family of proteins that is involved in the regulation of cell adhesion, cell shape and polarity. In addition, Scrib displays tumor suppressor activity. The binding between Scrib and LPP is mediated by the PDZ domains of Scrib and the carboxy-terminus of LPP. Both proteins localize in cell-cell contacts. Whereas LPP is also localized in focal adhesions and in the nucleus, Scrib could not be detected at these locations in MDCKII and CV-1 cells. Furthermore, our investigations indicate that Scrib is dispensable for targeting LPP to focal adhesions and to cell-cell contacts, and that LPP is not necessary for localizing Scrib in cell-cell contacts. We show that all four PDZ domains of Scrib are dispensable for localizing this protein in cell-cell contacts. CONCLUSIONS: Here, we identified an interaction between one of zyxins family members, LPP, and the tumor suppressor protein Scrib. Both proteins localize in cell-cell contacts. This interaction links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates LPP in Scrib-associated functions. |
Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. | Members of the LAP protein family, LET-413 in Caenorhabditis elegans, Scribble in Drosophila melanogaster, and Erbin, Lano, Densin-180 and hScrib in mammals, have conserved structural features. LET-413 and Scribble are junctional proteins involved in establishing and maintaining epithelial cell polarity. scribble also behaves as a neoplastic tumor suppressor gene. We show here that, in epithelial cells, hScrib is recruited at cell-cell junctions in an E-cadherin-dependent manner as shown by calcium switch assays in MDCK cells, re-expression of E-cadherin in MDA-231 cells treated by 5-Aza-2-deoxycytidine (5Aza), and siRNA experiments. hScrib is restricted at the basolateral membrane of epithelial cells by its LRR domain, and is enriched in Triton X-100-insoluble fractions. In breast cancers, most lobular tumors did not express hScrib and E-cadherin while ductal tumors had a less frequent downregulation of hScrib. Our data provide additional insights on the modalities of recruitment of hScrib at the cell-cell junctions, and establish a potential link between the E-cadherin and hScrib tumor suppressors. |
The tumor suppressor Scrib selectively interacts with specific members of the zyxin family of proteins. | The zyxin family of proteins consists of five members, ajuba, LIMD1, LPP, TRIP6 and zyxin, which localize at cell adhesion sites and shuttle to the nucleus. Previously, we established that LPP interacts with the tumor suppressor Scrib, a member of the leucine-rich repeat and PDZ (LAP) family of proteins. Here, we demonstrate that Scrib also interacts with TRIP6, but not with zyxin, ajuba, or LIMD1. We show that TRIP6 directly binds to the third PDZ domain of Scrib via its carboxy-terminus. Both proteins localize in cell-cell contacts but are not responsible to target each other to these structures. In the course of our experiments, we also characterized the nuclear export signal of human TRIP6, and show that LIMD1 is localized in focal adhesions. The binding between two of zyxins family members and Scrib links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates these zyxin family members in Scrib-associated functions. |
The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. | Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin-Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to betaPIX. Rather, Scrib depletion disrupts E-cadherin-mediated cell-cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin-alpha-catenin fusion protein but not by E-cadherin-green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration. |
Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. | Recently, we have identified human scribble (hScrib), human homolog of the Drosophila tumor suppressor Scribble, as a substrate of human papillomavirus E6 oncoproteins for ubiquitin-mediated degradation dependent on ubiquitin-protein ligase E6AP. Human Scribble, classified as a LAP protein containing leucine-rich repeats and PDZ domains, interacts with E6 through its PDZ domains and C-terminal PDZ domain-binding motif of E6 protein. Interaction between human Discs Large (hDlg), which is a substrate of E6 for the ubiquitin-mediated degradation, and adenomatous polyposis coli (APC) has been shown. Here, we investigated whether hScrib and APC interact with each other in vitro and in vivo. Interaction between hScrib and APC is mediated by the PDZ domains 1 and 4 of hScrib and C-terminal PDZ domain-binding motif of APC. Human Scribble co-localized with APC at the synaptic sites of hippocampal neuron and at the tip of membrane protrusion in the epithelial cell line. Interference of the interaction between hScrib and APC caused disruption of adherens junction. Knockdown of hScrib expression by RNAi disrupts localization of APC at the adherens junction. These data suggest that hScrib may participate in the hDlg-APC complex through its PDZ domains and regulate cell cycle and neural function by associating with APC. |
Human homolog of Drosophila tumor suppressor Scribble negatively regulates cell-cycle progression from G1 to S phase by localizing at the basolateral membrane in epithelial cells. | Drosophila tumor suppressor Scribble has been identified as an apical-basolateral polarity determinant in epithelia. A human homolog of Drosophila Scribble, human Scribble (hScrib), has been identified as a protein targeted by human papillomavirus E6 for the ubiquitin-mediated degradation dependent on E6AP, a cellular ubiquitin-protein ligase. Human Scribble is classified as a LAP protein, having leucine-rich repeats (LRRs) and PDZ domains. We investigated whether hScrib, which is thought to have a role in polarity determination based on the data of its Drosophila homolog, is involved in cell-cycle regulation and proliferation control of epithelia. Transfection of hScrib inhibits cell-cycle progression from G1 to S phase, and it up- and down-regulates expression of adenomatous polyposis coli and cyclins A and D1, respectively. Knockdown of hScrib expression by siRNA leads to cell-cycle progression from G1 to S phase. We explored functional domain mapping to reveal which domains of hScrib are critical for its cellular proliferation control and localization at the basolateral membrane. We found that LRRs and PDZ domain 1 are indispensable for hScrib to inhibit cell growth by blocking cell-cycle progression and to keep its proper localization. These data indicate that basolateral membrane localization of hScrib is closely related to its proliferation control. Our findings suggest the possibility that hScrib is involved in signal transduction to negatively regulate cell proliferation by localizing at the basolateral membrane of epithelial cells through LRRs and PDZ domains. |
The PDZ domain-binding motif of the human T cell leukemia virus type 1 tax protein induces mislocalization of the tumor suppressor hScrib in T cells. | Interactions with cellular PDZ domain-containing proteins obviously contribute to the tumorigenic potential of several viral oncoproteins. In this regard, the oncogenic potential of the human T cell leukemia virus type 1 Tax protein correlates with its binding capacity to the tumor suppressor hDlg. Recent results show that hDlg in T cells is associated to a network of scaffolding proteins including another PDZ domain-containing protein termed hScrib. Interestingly, previous studies have revealed complementary activities of both proteins in the control of epithelial cell polarity. Here, we demonstrate that Tax can bind to hScrib and that the resulting Tax/hScrib complex is present in human T cell leukemia virus type 1-infected T cells. By confocal microscopy, we show that Tax modifies the localization of hScrib in transfected COS cells as well as in infected T cell lines and targets hScrib to particular spots exhibiting a granular distribution, mainly distributed in the cytoplasm. Given that Tax sequesters hScrib to these particular structures, we postulate that Tax might inhibit hScrib activity. Providing further support to this idea, we find that transient overexpression of hScrib attenuates T cell receptor-induced NFAT activity but that the presence of Tax counteracts this negative effect on the NFAT pathway. The fact that hDlg and hScrib are both targeted by Tax underlies their importance in T cell function. |
hScrib, a human homologue of Drosophila neoplastic tumor suppressor, is a novel death substrate targeted by caspase during the process of apoptosis. | hScrib, human homologue of Drosophila neoplastic tumor suppressor, was identified as a target of human papillomavirus E6 oncoprotein for the ubiquitin-mediated degradation. Here, we report that hScrib is a novel death substrate targeted by caspase. Full-length hScrib was cleaved by caspase during death ligands-induced apoptosis, which generates a p170 C-terminal fragments in Hela cells. In vitro cleavage assay using recombinant caspases showed that hScrib is cleaved by the executioner caspases. DNA damage-induced apoptosis caused loss of expression of full-length hScrib, which was recovered by addition of capase-3 inhibitor in HaCat cells. TUNEL positive apoptotic cells, which were identified 4 h after UV irradiation in HaCat cells, showed loss of hScrib expression at the adherens junction. mutational analysis identified the caspase-dependent cleavage site of hScrib at the position of Asp-504. Although MDCK cells transfected with GFP-fused wild-type hScrib showed loss of E-cadherin expression and shrinkage of cytoplasm by UV irradiation, cells transfected with hScrib with Ala substitution of Asp-504 showed resistance to caspase-dependent cleavage of hScrib and intact expression of E-cadherin. These results indicate that caspase-dependent cleavage of hScrib is a critical step for detachment of cell contact during the process of apoptosis. |
Human T-cell leukemia virus type 1 Tax induces an aberrant clustering of the tumor suppressor Scribble through the PDZ domain-binding motif dependent and independent interaction. | Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia. HTLV-1 Tax1 transforming protein interacts with several PDZ domain-containing proteins, and the interaction is associated with the transforming activities of Tax1 as well as persistent HTLV-1 infection. In this study, we show that Tax1 interacts with the tumor suppressor Scribble containing PDZ domains. Unlike other Tax1-interacting PDZ domain proteins, the PDZ domain-binding motif (PBM) of Tax1 was not required for the interaction with transiently expressed Scribble in 293T cells, but it was essential for the interaction with endogenous Scribble. Endogenous Scribble in 293T cells was primarily localized at the plasma membrane and colocalized with Tax1 but not Tax1C lacking PBM, whereas transiently expressed Scribble was localized in the cytoplasm and colocalized with Tax1C as well as Tax1, thus suggesting that Tax1 is recruited to the site of endogenous Scribble, such as the plasma membrane, in a PBM-dependent manner, and thereafter it interacts with Scribble in a PBM-independent and PBM-dependent manner. Endogenous Scribble was diffusely localized at the plasma membrane of HTLV-1-uninfected T-cell lines, whereas it colocalized with Tax1 as small and large aggregate at the plasma membranes. These results suggest that Tax1 through two binding sites induce aberrant clustering of Scribble, thereby altering the functions in HTLV-1-infected cells, which may thus play a role in persistent HTLV-1 infection and the pathogenesis. |
Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium. | Formation of the epithelial barrier and apico-basal cell polarity represent two characteristics and mutually dependent features of differentiated epithelial monolayers. They are controlled by special adhesive structures, tight junctions (TJs), and polarity protein complexes that define the apical and the basolateral plasma membrane. The functional interplay between TJs and polarity complexes remains poorly understood. We investigated the role of Scribble, a basolateral polarity protein and known tumor suppressor, in regulating TJs in human intestinal epithelium. Scribble was enriched at TJs in T84 and SK-CO15 intestinal epithelial cell monolayers and sections of normal human colonic mucosa. siRNA-mediated knockdown of Scribble in SK-CO15 cells attenuated development of epithelial barrier and inhibited TJ reassembly independently of other basolateral polarity proteins Lgl-1 and Dlg-1. Scribble selectively co-imunoprecipitated with TJ protein ZO-1, and ZO-1 was important for Scribble recruitment to intercellular junctions and TJ reassembly. Lastly, Scribble was mislocalized from TJs and its expression down-regulated in interferon-gamma-treated T84 cell monolayers and inflamed human intestinal mucosa in vivo. We conclude that Scribble is an important regulator of TJ functions and plasticity in the intestinal epithelium. Down-regulation of Scribble may mediate mucosal barrier breakdown during intestinal inflammation. |
hScrib, a human homolog of Drosophila neoplastic tumor suppressor, is involved in the progress of endometrial cancer. | Recent studies have revealed that hScrib, the human homolog of Drosophila Scribble, is an apical-basal polarity determinant and an essential component of the adherens junction. In addition, hScrib has a critical role in the inhibition of cell proliferation through cell cycle progression. hScrib has been reported to be involved in the processes of many cancers, such as breast cancer, cervical cancer, colon carcinoma, etc.; however, the correlation between hScrib and endometrial cancer has not been identified. To address a possible role of hScrib in the development of endometrial cancer, we examined the localization and expression of hScrib in endometrial cancer. The present study demonstrated that decreased expression and changed localization of hScrib were associated with clinical stage, histopathological differentiation, and lymph node metastasis in endometrial cancer. hScrib might share an adherens junction with basolateral membrane partially by acting on E-cadherin in endometrial cancer. This evidence suggests that hScrib is involved in the development of endometrial cancer. |