Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

29117

Name

BRD7

Synonymous

BP75|CELTIX1|NAG4;bromodomain containing 7;BRD7;bromodomain containing 7

Definition

75 kDa bromodomain protein|bromodomain-containing protein 7|protein CELTIX-1

Position

16q12

Gene type

protein-coding

Title

Abstract

BRD7 is a candidate tumour suppressor gene required for p53 function.

oncogene-induced senescence is a p53-dependent defence mechanism against uncontrolled proliferation. Consequently, many human tumours harbour p53 mutations and others show a dysfunctional p53 pathway, frequently by unknown mechanisms. Here we identify BRD7 (bromodomain-containing 7) as a protein whose inhibition allows full neoplastic transformation in the presence of wild-type p53. In human breast tumours harbouring wild-type, but not mutant, p53 the BRD7 gene locus was frequently deleted and low BRD7 expression was found in a subgroup of tumours. Functionally, BRD7 is required for efficient p53-mediated transcription of a subset of target genes. BRD7 interacts with p53 and p300 and is recruited to target gene promoters, affecting histone acetylation, p53 acetylation and promoter activity. Thus, BRD7 suppresses tumorigenicity by serving as a p53 cofactor required for the efficient induction of p53-dependent oncogene-induced senescence.

Gene regulation and tumor suppression by the bromodomain-containing protein BRD7.

oncogene-induced senescence (OIS) is a cellular defense mechanism against excessive mitogenic signaling and tumorigenesis. One of the major pathways required for OIS is the p53 tumor suppressor pathway. Consequently, many human tumors harbor p53 mutations while others show a dysfunctional p53 pathway, frequently by unknown mechanisms. We recently identified BRD7 as a potential tumor suppressor gene acting as a transcriptional cofactor for p53, affecting histone acetylation, p53 acetylation, and promoter activity on a subset of p53 target genes. We further found low BRD7 expression specifically in a subgroup of human breast tumors harboring wild-type, but not mutant, p53 and showed that one of the responsible mechanisms is deletion of the BRD7 gene locus. Here we further discuss the role of BRD7 as a cofactor in transcriptional regulation and highlight its role as a tumor suppressor via association with p53 and other tumor suppressor proteins.

')