Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

4045

Name

LSAMP

Synonymous

IGLON3|LAMP;limbic system-associated membrane protein;LSAMP;limbic system-associated membrane protein

Definition

IgLON family member 3

Position

3q13.2-q21

Gene type

protein-coding

Title

Abstract

Polymorphisms of the tumor suppressor gene LSAMP are associated with left main coronary artery disease.

Previous association mapping on chromosome 3q13-21 detected evidence for association at the limbic system-associated membrane protein (LSAMP) gene in individuals with late-onset coronary artery disease (CAD). LSAMP has never been implicated in the pathogenesis of CAD. We sought to thoroughly characterize the association and the gene. Non-redundant single nucleotide polymorphisms (SNPs) across the gene were examined in an initial dataset (168 cases with late-onset CAD, 149 controls). Stratification analysis on left main CAD (N = 102) revealed stronger association, which was further validated in a validation dataset (141 cases with left main CAD, 215 controls), a third control dataset (N = 255), and a family-based dataset (N = 2954). A haplotype residing in a novel alternative transcript of the LSAMP gene was significant in all independent case-control datasets (p = 0.0001 to 0.0205) and highly significant in the joint analysis (p = 0.00004). Lower expression of the novel alternative transcript was associated with the risk haplotype (p = 0.0002) and atherosclerosis burden in human aortas (p = 0.0001). Furthermore, silencing LSAMP expression in human aortic smooth muscle cells (SMCs) substantially augmented SMC proliferation (p<0.01). Therefore, the risk conferred by the LSAMP haplotype appears to be mediated by LSAMP down-regulation, which may promote SMC proliferation in the arterial wall and progression of atherosclerosis.

LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization.

Osteosarcomas are the most common primary malignant tumor of bone, and almost all conventional osteosarcomas are high-grade tumors with complex karyotypes. We have examined DNA copy number changes in 36 osteosarcoma tumors and 20 cell lines using microarray-based comparative genomic hybridization. The most frequent minimal recurrent regions of gain identified in the tumor samples were in 1q21.2-q21.3 (78% of the samples), 1q21.3-q22 (78%), and 8q22.1 (72%). Minimal recurrent regions in 10q22.1-q22.2 (81%), 6q16.1 (67%), 13q14.2 (67%), and 13q21.1 (67%) were most frequently lost. A small region in 3q13.31 (2.1 Mb) containing the gene limbic system-associated membrane protein (LSAMP) was frequently deleted (56%). LSAMP has previously been reported to be a candidate tumor suppressor gene in other cancer types. The deletion was validated using fluorescence in situ hybridization, and the expression level and promoter methylation status of LSAMP were investigated using quantitative real-time reverse transcription PCR and methylation-specific PCR, respectively. LSAMP showed low expression compared to two normal bone samples in 6/15 tumors and 5/9 cell lines with deletion of 3q13.31, and also in 5/14 tumors and 3/11 cell lines with normal copy number or gain. Partial or full methylation of the investigated CpG island was identified in 3/30 tumors and 7/20 cell lines. Statistical analyses revealed that loss of 11p15.4-p15.3 and low expression of LSAMP (both P = 0.011) were significantly associated with poor survival. Our results show that LSAMP is a novel candidate tumor suppressor gene in osteosarcomas.

Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model.

BACKGROUND: Osteosarcomas are the most common primary malignant tumors of bone, showing complex chromosomal rearrangements with multiple gains and losses. A frequent deletion within the chromosomal region 3q13.31 has been identified by us and others, and is mainly reported to be present in osteosarcomas. The purpose of the study was to further characterize the frequency and the extent of the deletion in an extended panel of osteosarcoma samples, and the expression level of the affected genes within the region. We have identified LSAMP as the target gene for the deletion, and have studied the functional implications of LSAMP-reexpression. METHODS: LSAMP copy number, expression level and protein level were investigated by quantitative PCR and western blotting in an osteosarcoma panel. The expression of LSAMP was restored in an osteosarcoma cell line, and differences in proliferation rate, tumor formation, gene expression, migration rate, differentiation capabilities, cell cycle distribution and apoptosis were investigated by metabolic dyes, tumor formation in vivo, gene expression profiling, time-lapse photography, differentiation techniques and flow cytometry, respectively. RESULTS: We found reduced copy number of LSAMP in 45/76 osteosarcoma samples, reduced expression level in 25/42 samples and protein expression in 9/42 samples. By restoring the expression of LSAMP in a cell line with a homozygous deletion of the gene, the proliferation rate in vitro was significantly reduced and tumor growth in vivo was significantly delayed. In response to reexpression of LSAMP, mRNA expression profiling revealed consistent upregulation of the genes hairy and enhancer of split 1 (HES1), cancer/testis antigen 2 (CTAG2) and kruppel-like factor 10 (KLF10). CONCLUSIONS: The high frequency and the specificity of the deletion indicate that it is important for the development of osteosarcomas. The deletion targets the tumor suppressor LSAMP, and based on the functional evidence, the tumor suppressor function of LSAMP is most likely exerted by reducing the proliferation rate of the tumor cells, possibly by indirectly upregulating one or more of the genes HES1, CTAG2 or KLF10. To our knowledge, this study describes novel functions of LSAMP, a first step to understanding the functional role of this specific deletion in osteosarcomas.

')