Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

5037

Name

PEBP1

Synonymous

HCNP|HCNPpp|HEL-210|HEL-S-34|PBP|PEBP|PEBP-1|RKIP;phosphatidylethanolamine binding protein 1;PEBP1;phosphatidylethanolamine binding protein 1

Definition

Raf kinase inhibitory protein|epididymis luminal protein 210|epididymis secretory protein Li 34|hippocampal cholinergic neurostimulating peptide|neuropolypeptide h3|phosphatidylethanolamine-binding protein 1|prostatic binding protein|prostatic-binding pro

Position

12q24.23

Gene type

protein-coding

Title

Abstract

Regulation of RKIP function by Helicobacter pylori in gastric cancer.

Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that infects more than half of the worlds population and is a major cause of gastric adenocarcinoma. The mechanisms that link H. pylori infection to gastric carcinogenesis are not well understood. In the present study, we report that the Raf-kinase inhibitor protein (RKIP) has a role in the induction of apoptosis by H. pylori in gastric epithelial cells. Western blot and luciferase transcription reporter assays demonstrate that the pathogenicity island of H. pylori rapidly phosphorylates RKIP, which then localizes to the nucleus where it activates its own transcription and induces apoptosis. Forced overexpression of RKIP enhances apoptosis in H. pylori-infected cells, whereas RKIP RNA inhibition suppresses the induction of apoptosis by H. pylori infection. While inducing the phosphorylation of RKIP, H. pylori simultaneously targets non-phosphorylated RKIP for proteasome-mediated degradation. The increase in RKIP transcription and phosphorylation is abrogated by mutating RKIP serine 153 to valine, demonstrating that regulation of RKIP activity by H. pylori is dependent upon RKIPs S153 residue. In addition, H. pylori infection increases the expression of Snail, a transcriptional repressor of RKIP. Our results suggest that H. pylori utilizes a tumor suppressor protein, RKIP, to promote apoptosis in gastric cancer cells.

MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells.

The Raf kinase inhibitor protein (RKIP) is a tumor suppressor that protects against metastasis and genomic instability. RKIP is downregulated in many types of tumors, although the mechanism for this remains unknown. microRNAs silence target genes via translational inhibition or target mRNA degradation, and are thus important regulators of gene expression. In the current study, we found that miR-224 expression is significantly upregulated in breast cancer cell lines, and especially in highly invasive MDA-MB-231 cells, compared to human normal breast epithelial cells. In addition, miR-224 inhibits RKIP gene expression by directly targeting its 3-untranslated region (3-UTR). Moreover, metastasis, as assayed by Transwell migration, 3D growth in Matrigel, and wound healing, was enhanced by ectopic expression of miR-224 and inhibited by miR-224 downregulation. Promotion of metastasis in response to miR-224 downregulation was associated with derepression of the stroma-associated RKIP target genes, CXCR4, MMP1, and OPN, which are involved in breast tumor metastasis to the bone. Taken together, our data indicate that miR-224 play an important role in metastasis of human breast cancer cells to the bone by directly suppressing the RKIP tumor suppressor.

Decreased expression and aberrant methylation of Raf kinase inhibitory protein gene in esophageal squamous cell carcinoma.

Raf kinase inhibitory protein (RKIP) gene is considered to be a suppressor of metastasis involved in various carcinomas. In the present study, we observed that promoter methylation repressed the expression of RKIP in TE-13 cell line. 5-Aza treatment and stable transfection of RKIP resulted in a significant inhibition of TE-13 cell proliferation. The promoter hypermethylation of RKIP was found to occur in dysplastic tissues and a close correlation was noted between RKIP methylation and the loss of mRNA and protein expression of the gene in ESCC specimens. In summary, RKIP may act as a tumor suppressor gene in esophageal cancer.

')