Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

64478

Name

CSMD1

Synonymous

PPP1R24;CUB and Sushi multiple domains 1;CSMD1;CUB and Sushi multiple domains 1

Definition

CUB and sushi domain-containing protein 1|protein phosphatase 1, regulatory subunit 24

Position

8p23.2

Gene type

protein-coding

Title

Abstract

CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway.

In this work, we studied the effects of CUB and Sushi multiple domains 1 gene (CSMD1) expression in A375 melanoma cells in vivo and in vitro. CSDM1 expression decreased proliferation and migration, and increased apoptosis and G(1) arrest in A375 cells in vitro. expression of CSDM1 in established xenografted tumors decreased tumor size and weight, and decreased the density of intratumor microvessels. The survival rate of mice with tumors expressing CSMD1 was significantly higher than mice with tumors that did not express CSDM1. These results confirm the role of CSDM1 as a tumor suppressor gene in melanoma cells. Furthermore, we found that CSMD1 can interact with Smad3, activate Smad1, Smad2, and Smad3, and increase the expression of Smad4. These results might prove helpful for the development of novel therapies for melanoma treatment.

Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1) gene reveals association with early age of diagnosis in colorectal cancer patients.

BACKGROUND: The Cub and Sushi Multiple Domains 1 (CSMD1) gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients. METHODS: We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A. RESULTS: Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%). The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014). This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%). Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years) than those without somatic mutations (average age, 68 years). The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%), suggesting extensive cytosine methylation predisposing to somatic mutations. CONCLUSIONS: Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical presentation in colorectal tumors, thus further implicating CSMD1 as a tumor suppressor gene.

')