General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 7157 |
Name | TP53 |
Synonymous | BCC7|LFS1|P53|TRP53;tumor protein p53;TP53;tumor protein p53 |
Definition | antigen NY-CO-13|cellular tumor antigen p53|mutant tumor protein 53|p53 tumor suppressor|phosphoprotein p53|transformation-related protein 53|tumor protein 53 |
Position | 17p13.1 |
Gene type | protein-coding |
Title |
Abstract |
Alterations of oncogenes, tumor suppressor genes and growth factors in hepatocellular carcinoma: with relation to tumor size and invasiveness. | OBJECTIVE: To make a better understanding of the molecular mechanisms involved in recurrence and metastasis of the hepatocellular carcinoma (HCC), some invasion related oncogenes, and growth factors have been investigated. METHODS: The studies were separately carried out, the results of which were summarized in this article with relation to tumor size and invasiveness of HCC. RESULTS: The aberration rates of p53 and CDKN2 in HCC were 45.9% and 36.4% respectively, which were higher in invasive HCC compared with non-invasive HCC. H-ras expression was positive in 29.3% of HCC, which was associated with recurrence and extrahepatic metastasis of HCC. Intralesional injection of H-ras antisense gene markedly inhibited the tumor growth and metastasis of HCC in nude mice. The positive rates of transforming growth factor (TGF)-alpha, epidermal growth factor receptor (EGFR) and c-erbB-2 were 45.7%, 47.1% and 92.3% respectively. The expression of EGFR was closely related to TGF-alpha, which was related to HCC recurrence. But no obvious difference of TGF-alpha or c-erbB-2 expression was found between HCC with and without recurrence, or with and without extrahepatic metastasis. expression of nm23/tissue inhibitor of metalloproteinase (TIMP)-2 was positively associated with the prognosis of HCC patients (Log-rank, P < 0.001). The alterative rates of above-mentioned genes and growth factors in small HCC were slightly lower than that in large ones, but no significant difference was shown except the p53 mutation. CONCLUSIONS: The p53/CDKN2 mutation, over-expression of H-ras/EGFR, were associated with the invasiveness and recurrence of HCC. H-ras antisense gene might be of potential implication in the control of HCC recurrence and metastasis. expression of nm23/TIMP-2 was closely related to the prognosis of HCC patients. Biological characteristics remained critical points to the prognosis even in small HCC. |
Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. | To investigate the role of an activated K-Ras gene in the initiation and maintenance of lung adenocarcinomas, we developed transgenic mice that express murine K-Ras4b(G12D) under the control of doxycycline in type II pneumocytes. Focal proliferative lesions of alveolar type II pneumocytes were observed as early as seven days after induction with doxycycline; after two months of induction, the lungs contained adenomas and adenocarcinomas, with focal invasion of the pleura at later stages. Removal of doxycycline caused a rapid fall in levels of mutant K-Ras RNA and concomitant apoptotic regression of both the early proliferative lesions and the tumors. Tumor burden was dramatically decreased by three days after withdrawal, and tumors were undetectable after one month. When similar experiments were performed with animals deficient in either the p53 gene or the Ink4A/Arf locus, tumors arose more quickly (within one month of exposure to doxycycline) and displayed more obvious histological features of malignancy; nevertheless, these tumors also regressed rapidly when the inducer was removed, implying that continued production of mutant K-Ras is necessary to maintain the viability of tumor cells in the absence as well as the presence of tumor suppressor genes. We also show that the appearance and regression of these pulmonary tumors can be readily monitored in anesthetized transgenic animals by magnetic resonance imaging. |
Repression of hepatocyte nuclear factor 4alpha tumor suppressor p53: involvement of the ligand-binding domain and histone deacetylase activity. | tumor suppressor p53 is known to inhibit transactivation by certain nuclear receptors, and overexpressed p53 is known to correlate with poor differentiation in liver cancer. Therefore, we investigated whether wild-type p53 might also affect the function of hepatocyte nuclear factor 4alpha1 (HNF4alpha1), an orphan receptor required for liver differentiation. Our results show that HNF4alpha1-mediated transactivation is repressed by p53 but that the mechanism of repression is not due to inhibition of HNF4alpha1 DNA binding. Rather, transfections with Gal4 fusion constructs indicate that the repression is via the ligand-binding domain of HNF4alpha1. Furthermore, we found that p53 in human embryonic kidney whole-cell extracts preferentially bound the ligand-binding domain of HNF4alpha1 and that the activation function 2 region was required for the binding. Competition for coactivator CREB binding protein could not entirely account for the repression but trichostatin A, an inhibitor of histone deacetylase activity, could reverse p53-mediated repression of HNF4alpha1. In contrast, p53-mediated repression of transcriptional activation of the same promoter by another transcriptional activator, CCAAT/enhancer-binding protein-alpha, could not be reversed by the addition of trichostatin A. These results suggest that p53, like other transcriptional repressors, inhibits transcription by multiple mechanisms, one of which involves interaction with the ligand-binding domain and recruitment of histone deacetylase activity. |
Tumor suppressor p53 mediates apoptotic cell death triggered by cyclosporin A. | The tumor suppressor p53 can induce growth arrest and cell death via apoptosis in response to a number of cellular stresses. We have shown previously that the immunosuppressant cyclosporin A (CsA) induces programmed cell death with typical features of apoptosis in rat glioma cells. We report that CsA treatment results in increased level of the p53 tumor suppressor, its nuclear accumulation, and transcriptional activation of p53-dependent genes. The increase of p53 correlates with the elevation of p21(Waf1) and Bax protein expression. The increased level of Bax protein was accompanied with changes in its subcellular localization and association with mitochondria. Importantly, we demonstrate that glioma cells stably transfected with a mutant p53 (p53Val135) fail to increase p21 and Bax protein levels and are less sensitive to CsA-induced apoptosis. Furthermore, primary fibroblasts from p53-/- knockout mice are significantly more resistant to CsA-induced apoptosis compared with their corresponding counterparts containing functional p53. Together, our results suggest that the apoptotic program activated by CsA can be mediated by activation of p53 tumor suppressor and potentiation of its ability to initiate apoptosis. |
Tumor suppressor p53 mediates apoptotic cell death triggered by cyclosporin A. | The tumor suppressor p53 can induce growth arrest and cell death via apoptosis in response to a number of cellular stresses. We have shown previously that the immunosuppressant cyclosporin A (CsA) induces programmed cell death with typical features of apoptosis in rat glioma cells. We report that CsA treatment results in increased level of the p53 tumor suppressor, its nuclear accumulation, and transcriptional activation of p53-dependent genes. The increase of p53 correlates with the elevation of p21(Waf1) and Bax protein expression. The increased level of Bax protein was accompanied with changes in its subcellular localization and association with mitochondria. Importantly, we demonstrate that glioma cells stably transfected with a mutant p53 (p53Val135) fail to increase p21 and Bax protein levels and are less sensitive to CsA-induced apoptosis. Furthermore, primary fibroblasts from p53-/- knockout mice are significantly more resistant to CsA-induced apoptosis compared with their corresponding counterparts containing functional p53. Together, our results suggest that the apoptotic program activated by CsA can be mediated by activation of p53 tumor suppressor and potentiation of its ability to initiate apoptosis. |
Human tumor suppressor ARF impedes S-phase progression independent of p53. | Using alternative reading frames, the human ARF-INK4a locus encodes two unrelated proteins that both function in tumor suppression. p16(INK4a) maintains the retinoblastoma protein in its growth-suppressive state through inhibition of cyclin D-dependent kinase activity, whereas ARF binds with MDM2 and stabilizes p53. The majority of the activity of ARF to date is ascribed to its ability to activate p53, resulting in a G(1) cell cycle arrest or apoptosis. We show here that ARF colocalizes with DNA replication protein A (RPA32) and that overexpression of ARF reduces the rate of DNA synthesis resulting in accumulation of an S-phase cell population. Impediment of DNA synthesis by ARF can occur and becomes more evident in the absence of p53. Hence, the biological consequence of ARF induction varies dependent on cellular p53 status, inducing predominantly a G(1) arrest or apoptosis in p53-positive cells or causing S-phase retardation when p53 function is comprised. |
p53 Activation by nitric oxide involves down-regulation of Mdm2. | Nitric oxide (NO) is an important bioactive molecule involved in a variety of physiological and pathological processes. At the same time, NO is also an inducer of stress signaling, owing to its ability to damage proteins and DNA. NO was reported to be a potent activator of the p53 tumor suppressor protein. However, the mechanisms underlying p53 activation by NO remain to be elucidated. We report here that NO induces the accumulation of transcriptionally active p53 in a variety of cell types and that NO signaling to p53 does not require ataxia telangiectasia-mutated (ATM), poly(ADP-ribose) polymerase 1, or the ARF tumor suppressor protein. In mouse embryonic fibroblasts, NO elicits a down-regulation of Mdm2 protein levels that precedes the rise in p53. NO-induced down-regulation of Mdm2 protein but not its mRNA also occurs in several p53-deficient cell types and is thus p53-independent. The drop in endogenous Mdm2 levels following NO treatment is accompanied by a corresponding reduction in the rate of p53 ubiquitination. Thus, the down-regulation of Mdm2 by NO is likely to contribute to the activation of p53. |
Clinical applications of the diagnosis of p53 alterations in squamous cell carcinoma of the head and neck. | Alteration of the p53 tumor suppressor gene implies an extremely high risk of developing malignancy, and mutation of the gene is one of the most frequent genetic changes found in human cancer. Squamous cell carcinoma of the head and neck (SCCHN) shows a high incidence of p53 tumor suppressor gene alterations; the latter therefore appears to play an important role in the pathogenesis and progression of such neoplasms. The loss of p53 protein activity may be due to many p53 gene mutations or to the action of certain viruses that infect the oral cavity. Local recurrence is the most common cause of mortality after SCCHN surgery; in this sense, p53 gene mutations have been observed in tissue adjacent to the tumor, and constitute a good prognostic marker of tumor recurrence. The analysis of p53 tumor suppressor gene alterations in SCCHN affords important information on the diagnosis, prognosis and treatment of affected patients - such alterations representing an indicator in high risk patients of the convenience of applying more aggressive adjuvant therapies. |
Refolding and structural characterization of the human p53 tumor suppressor protein. | The human tumor suppressor p53 is a conformationally flexible and functionally complex protein that is only partially understood on a structural level. We expressed full-length p53 in the cytosol of Escherichia coli as inclusion bodies. To obtain active, recombinant p53, we varied renaturation conditions using DNA binding activity and oligomeric state as criteria for successful refolding. The optimized renaturation protocol allows the refolding of active, DNA binding p53 with correct quaternary structure and domain contact interfaces. The purified protein could be allosterically activated for DNA binding by addition of a C-terminally binding antibody. Analytical gelfiltration and chemical cross-linking confirmed the tetrameric quaternary structure and the spectroscopic analysis of renatured p53 by fluorescence and circular dichroism, suggested that native p53 is partially unstructured. |
Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. | Using a bio-oligo pull-down DNA-binding assay we investigated the binding capacity of endogenous, DNA damage-induced p53 in human diploid fibroblasts to several p53-responsive elements (REs) present in p53-regulated genes. During the course of p53 accumulation, we observed a decrease in p53 binding to the GADD45 but not to the p21(WAF1/CIP1) RE. Using mutated GADD45 sequences we show that this change is dependent on the presence of cytosines at position 3 in RE pentamers and on the p53 redox state. Site-directed mutagenesis experiments demonstrated that Cys277 (a residue directly contacting base 3 in a RE pentamer) is critical for differential regulation of GADD45 in DNA-damaged cells. These data represent a novel mechanism for differential affinity of p53 to distinct REs. |
Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. | The p53 tumor suppressor regulates the cellular response to genetic damage through its function as a sequence-specific transcription factor. Among the most well-characterized transcriptional targets of p53 is the mdm2 oncogene. Activation of mdm2 is critical in the p53 pathway because the mdm2 protein marks p53 for proteosome-mediated degradation, thereby providing a negative-feedback loop. Here we show that the ATM-related TRRAP protein functionally cooperates with p53 to activate mdm2 transcription. TRRAP is a component of several multiprotein acetyltransferase complexes implicated in both transcriptional regulation and DNA repair. In support of a role for these complexes in mdm2 expression, we show that transactivation of the mdm2 gene is augmented by pharmacological inhibition of cellular deacetylases. In vitro analysis demonstrates that p53 directly binds to a TRRAP domain previously shown to be an activator docking site. Furthermore, transfection of cells with antisense TRRAP blocks p53-dependent transcription of mdm2. Finally, using chromatin immunoprecipitation, we demonstrate direct p53-dependent recruitment of TRRAP to the mdm2 promoter, followed by increased histone acetylation. These findings suggest a model in which p53 directly recruits a TRRAP/acetyltransferase complex to the mdm2 gene to activate transcription. In addition, this study defines a novel biochemical mechanism utilized by the p53 tumor suppressor to regulate gene expression. |
Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. | In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis. |
Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. | Using a transactivation-defective p53 derivative as bait, STK15, a centrosome-associated oncogenic serine/threonine kinase, was isolated as a p53 partner. The p53-STK15 interaction was confirmed further by co-immunoprecipitation and GST pull-down studies. In co-transfection experiments, p53 suppressed STK15-induced centrosome amplification and cellular transformation in a transactivation-independent manner. The suppression of STK15 oncogenic activity by p53 might be explained in part by the finding that p53 inhibited STK15 kinase activity via direct interaction with the latters Aurora box. Taken together, these findings revealed a novel mechanism for the tumor suppressor function of p53. |
The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. | ING1b is a candidate tumor suppressor that can stimulate the transcriptional activity of p53 and inhibit cell proliferation. The molecular basis of how ING1b activates p53 function remains unclear. Here we show that ING1b could stimulate the activity of p53 by increasing the level and stability of the p53 protein. The stabilization and activation of p53 by ING1b could be reversed by MDM2 in a dose-dependent manner. Conversely, ING1b could reverse the inhibition and degradation of p53 caused by MDM2 in a dose-dependent manner. Furthermore, ING1b and MDM2 bound to p53 in a mutually exclusive manner. In agreement with these observations, we found that similarly to MDM2, ING1b binds to the NH(2)-terminal region of p53. These data suggest a model in which ING1b disrupts the interaction between p53 and MDM2, leading to the stabilization of p53 and growth inhibition. |
Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. | The use of live bacteria in the treatment of cancer has a long and interesting history. We report the use of a purified bacterial redox protein, azurin, that enters human cancer (melanoma UISO-Mel-2) cells and induces apoptosis. The induction of apoptosis occurs readily in melanoma cells harboring a functional tumor suppressor protein p53, but much less efficiently in p53-null mutant melanoma (UISO-Mel-6) cells. A redox-negative mutant form of azurin (M44K/M64E) demonstrates much less cytotoxicity to the UISO-Mel-2 cells than the wild-type protein. Azurin has been shown to be internalized in UISO-Mel-2 cells and is localized predominantly in the cytosol and in the nuclear fraction. In the p53-null UISO-Mel-6 cells, azurin is localized only in the cytosol. Thus, intracellular trafficking of azurin to the nucleus is p53-dependent. Azurin forms a complex with p53, thereby stabilizing it and raising its intracellular level in cytosolic, mitochondrial, and nuclear fractions. Corresponding to an increasing level of p53, an inducer of apoptosis, the level of Bax also increases in mitochondria, allowing significant release of mitochondrial cytochrome c into the cytosol, thus initiating the onset of apoptosis. The M44K/M64E mutant form of azurin, deficient in cytotoxicity, is also deficient in forming a complex with p53 and is less efficient in stabilizing p53 than wild-type azurin. Azurin has been shown to allow regression of human UISO-Mel-2 tumors xenotransplanted in nude mice and may potentially be used in cancer treatment. |
Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. | Patients with AIDS are at increased risk for developing various neoplasms, including Hodgkins and non-Hodgkins lymphomas, Kaposis sarcomas, and anal-rectal carcinomas, suggestive that human immunodeficiency virus type-1 infection might promote establishment of AIDS-related cancers. Tat, the viral trans-activator, can be endocytosed by uninfected cells and has been shown to inhibit p53 functions, providing a candidate mechanism through which the human immunodeficiency virus type-1 might contribute to malignant transformation. Because Tat has been shown to interact with histone acetyltransferase domains of p300/cAMP-responsive element-binding protein (CREB)-binding protein and p300/CREB-binding protein-associated factor, we have investigated whether Tat might alter p53 acetylation and tumor suppressor-responsive transcription. Here, we demonstrate that both Tat and p53 co-localize with p300/CREB-binding protein-associated factor and p300 in nuclei of IMR-32 human neuroblastoma cells and in PC-12 pheochromocytoma cells. Further, p53 trans-activation of the 14-3-3varsigma promoter was markedly repressed by Tat-histone acetyltransferase interactions, and p53 acetylation by p300/CREB-binding protein-associated factor on residue Lys(320) was diminished as a result of Tat-histone acetyltransferase binding in vivo and in vitro. Tat also inhibited p53 acetylation by p300 in a dosage-dependent manner in vitro. Finally, HIV-1-infected Molt-4 cells displayed reduced p53 acetylation on lysines 320 and 373 in response to UV irradiation. Our results allude to a mechanism whereby the human immunodeficiency virus type-1 trans-activator might impair tumor suppressor functions in immune/neuronal-derived cells, thus favoring the establishment of neoplasia during AIDS. |
The complement inhibitor CD59 and the lymphocyte function-associated antigen-3 (LFA-3, CD58) genes possess functional binding sites for the p53 tumor suppressor protein. | p53 is an oncosuppressor protein, which acts via transcriptional and non-transcriptional mechanisms. The transcriptional function of p53 is mediated by specific responsive elements. In the present study we found active responsive elements, specific for the p53 within the 5flanking region and within the first intron of the gene encoding for the CD59 membrane inhibitor of reactive lysis, and within the first intron of the gene encoding for the CD58 membrane protein (LFA-3). The results suggest that p53 may enhance the transcription of both CD59 and CD58 and imply a novel role for p53 as a direct regulator of the immune response. |
Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. | Activated protein C (APC) is a systemic anti-coagulant and anti-inflammatory factor. It reduces organ damage in animal models of sepsis, ischemic injury and stroke and substantially reduces mortality in patients with severe sepsis. It was not known whether APC acts as a direct cell survival factor or whether its neuroprotective effect is secondary to its anti-coagulant and anti-inflammatory effects. We report that APC directly prevents apoptosis in hypoxic human brain endothelium through transcriptionally dependent inhibition of tumor suppressor protein p53, normalization of the pro-apoptotic Bax/Bcl-2 ratio and reduction of caspase-3 signaling. These mechanisms are distinct from those involving upregulation of the genes encoding the anti-apoptotic Bcl-2 homolog A1 and inhibitor of apoptosis protein-1 (IAP-1) by APC in umbilical vein endothelial cells. Cytoprotection of brain endothelium by APC in vitro required endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1), as did its in vivo neuroprotective activity in a stroke model of mice with a severe deficiency of EPCR. This is consistent with work showing the direct effects of APC on cultured cells via EPCR and PAR-1 (ref. 9). Moreover, the in vivo neuroprotective effects of low-dose mouse APC seemed to be independent of its anti-coagulant activity. Thus, APC protects the brain from ischemic injury by acting directly on brain cells. |
Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. | It has been shown that methylation of CpG dinucleotides located in the promoter region of TP53 is associated with low expression levels of this gene. We have analysed the methylation status of one CpG dinucleotide and of three CCWGG motifs, also located in the promoter region of the gene, in bone marrow samples obtained from patients with acute lymphoblastic leukemia (ALL). Eight out of 25 samples analysed showed methylation of either the CpG dinucleotide, the CCWGG motifs or both. Relative to nonmethylated leukemia samples, TP53 expression levels were decreased in all methylated samples in which TP53 expression could be measured. Methylation of CpG and CCWGG motifs in the promoter of TP53 could represent a novel mechanism leading to functional impairment of this tumor suppressor gene in ALL. |
Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. | The proliferation of most primary cells in culture is limited by replicative senescence and crisis, p53-dependent events. However, the regulation of p53 itself has not been defined. We find that deletion of the early growth response 1 (EGR1) transcription factor leads to a striking phenotype, including complete bypass of senescence and apparent immortal growth consistent with loss of a suppressor gene. EGR1-null mouse embryo fibroblasts (MEFs) exhibit decreased expression of p53, p21(Cip1/Waf1), and other p53 "marker" proteins. Precrisis WT but not EGR1-null cells exhibit irradiation-induced arrest. WT MEFs that emerge from crisis exhibit a mutated p53 (sequence confirmed), colony formation, and tumorigenicity. In contrast, high-passage EGR1-null MEFs retain the WT p53 sequence but with much reduced expression, remain untransformed, and grow continuously. An EGR1-expressing retrovirus restores p53 expression and sencescence to EGR1-null but not p53-null MEFs or postcrisis WT cells. Taken together, the results establish EGR1 as a major regulator of cell senescence and previously undescribed upstream "gatekeeper" of the p53 tumor suppressor pathway. |
ING1 and p53 tumor suppressor gene alterations in adenocarcinomas of the esophagogastric junction. | The aim of this study was to characterize molecular alterations of the recently reported candidate tumor suppressor gene, ING1, and to explore the relationship between ING1 and p53 in a well-defined series of adenocarcinomas of the esophagogastric junction (AdEGJ). Polymerase chain reaction (PCR)-based assays were used to characterize ING1 and p53 alterations, relative to histologically normal esophageal mucosa. Two tumors were found to have ING1 mutations: one novel missense mutation (AGC(Ser)-->ATC(Ile)) at codon 147, and one silent mutation (TCG(Ser)-->TCA(Ser)) at codon 173. Reduced expression of the two major alternatively spliced ING1 messenger RNA variants, p47(ING1a) and p33(ING1b) was variable, but was reduced (1.2-10-fold) in 12 of 19 AdEGJs compared to normal esophageal epithelium. No association between p53 and ING1 alterations was apparent. We conclude that reduced ING1 expression is frequently associated with AdEGJ tumorigenesis, further supporting its role as a tumor suppressor gene, and that ING1 expression is independent of p53 status. |
The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. | The cyclin-dependent kinase inhibitor p21/WAF1/CIP1 is an important regulator of cell cycle progression, senescence, and differentiation. Genotoxic stress leads to activation of the tumor suppressor p53 and subsequently to induction of p21 expression. Here we show that the tumor suppressor p53 cooperates with the transcription factor Sp1 in the activation of the p21 promoter, whereas histone deacetylase 1 (HDAC1) counteracts p53-induced transcription from the p21 gene. The p53 protein binds directly to the C terminus of Sp1, a domain which was previously shown to be required for the interaction with HDAC1. Induction of p53 in response to DNA-damaging agents resulted in the formation of p53-Sp1 complexes and simultaneous dissociation of HDAC1 from the C terminus of Sp1. Chromatin immunoprecipitation experiments demonstrated the association of HDAC1 with the p21 gene in proliferating cells. Genotoxic stress led to recruitment of p53, reduced binding of HDAC1, and hyperacetylation of core histones at the p21 promoter. Our findings show that the deacetylase HDAC1 acts as an antagonist of the tumor suppressor p53 in the regulation of the cyclin-dependent kinase inhibitor p21 and provide a basis for understanding the function of histone deacetylase inhibitors as antitumor drugs. |
Analyzing tumor suppressor activities in the murine small intestine. | We have used mice deficient in a series of genes with either known or potential tumor suppressive activity to determine the phenotype of loss of function of these genes in the mouse. We have tested a series of endpoints that derive from the hypothesis that loss of an apoptotic program would be predicted to fail to delete cells carrying DNA damage, that this would lead to increased clonogenic survival and thereby to an increased mutation burden and tumor predisposition. For p53 deficiency, we show that loss of the apoptotic program does not translate into an increase in spontaneous mutation rate. However, p53 deficiency can lead to increased clonogenic survival, although this is highly damage-type dependent. Furthermore, p53 deficiency weakly accelerates tumorigenesis associated with inactivation of the adenomatous polyposis coli gene, Apc. We have also analyzed mice mutant for the mismatch repair genes Msh2, Mlh1, and Pms2, describing circumstances in which all of these strains show defective apoptosis, increased clonogenic survival, and increased mutation rate. However, these effects are highly drug-type dependent and the pattern of dependency argues strongly that mutation rate increases as a direct result from loss of the apoptotic program. We have also identified a new role for p53 by intercrossing the p53 and Msh2 mutants, so demonstrating that heterozygosity for p53 accelerates microsatellite instability. Finally, we have analyzed mice mutant for Mbd4 and show that this gene functions in vivo as a tumor suppressor. |
Analysis of p53 "latency" and "activation" by fluorescence correlation spectroscopy. Evidence for different modes of high affinity DNA binding. | The concept that the tumor suppressor p53 is a latent DNA-binding protein that must become activated for sequence-specific DNA binding recently has been challenged, although the "activation" phenomenon has been well established in in vitro DNA binding assays. Using electrophoretic mobility shift assays and fluorescence correlation spectroscopy, we analyzed the binding of "latent" and "activated" p53 to double-stranded DNA oligonucleotides containing or not containing a p53 consensus binding site (DNAspec or DNAunspec, respectively). In the absence of competitor DNA, latent p53 bound DNAspec and DNAunspec with high affinity in a sequence-independent manner. Activation of p53 by the addition of the C-terminal antibody PAb421 significantly decreased the binding affinity for DNAunspec and concomitantly increased the binding affinity for DNAspec. The net result of this dual effect is a significant difference in the affinity of activated p53 for DNAspec and DNAunspec, which explains the activation of p53. High affinity nonspecific DNA binding of latent p53 required both the p53 core domain and the p53 C terminus, whereas high affinity sequence-specific DNA binding of activated p53 was mediated by the p53 core domain alone. The data suggest that high affinity nonspecific DNA binding of latent and high affinity sequence-specific binding of activated p53 to double-stranded DNA differ in their requirement for the C terminus and involve different structural features of the core domain. Because high affinity nonspecific DNA binding of latent p53 is restricted to wild type p53, we propose that it relates to its tumor suppressor functions. |
Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. | The BRCA1 tumor suppressor has been implicated in many cellular pathways, but the mechanisms by which it suppresses tumor formation are not fully understood. In vivo BRCA1 forms a heterodimeric complex with the related BARD1 protein, and its enzymatic activity as a ubiquitin ligase is largely dependent upon its interaction with BARD1. To explore the genetic relationship between BRCA1 and BARD1, we have examined the phenotype of Bard1-null mice. These mice become developmentally retarded and die between embryonic day 7.5 (E7.5) and E8.5. Embryonic lethality results from a severe impairment of cell proliferation that is not accompanied by increased apoptosis. In the absence of p53, the developmental defects associated with Bard1 deficiency are partly ameliorated, and the lethality of Bard1; p53-nullizygous mice is delayed until E9.5. This result, together with the increased chromosomal aneuploidy of Bard1 mutant cells, indicates a role for Bard1 in maintaining genomic stability. The striking similarities between the phenotypes of Bard1-null, Brca1-null, and double Bard1; Brca1-null mice provide strong genetic evidence that the developmental functions of Brca1 and Bard1 are mediated by the Brca1/Bard1 heterodimer. |
Wild type p53 gene causes reorganization of cytoskeleton and, therefore, the impaired deformability and difficult migration of murine erythroleukemia cells. | We studied the role of p53 gene in the biophysics and biology in murine erythroleukemia cell line (MEL), with the goal of understanding the influence of this tumor suppressor gene on the deformability and metastasis of tumor cells. Experiments were performed on MEL and p53-transfected MEL (MEL-M with mutant p53 gene and MEL-W with wild-type p53 gene). The cell growth curves indicated that the over-expression of wild-type p53 gene significantly suppressed the growth of MEL, with G(0)-G(1) arrest and apoptosis shown by flow cytometric assays. Confocal laser scanning microscopy revealed that the MEL-W had a more compact organization of the F-Actin cytoskeleton than MEL and MEL-M. Fluorescence polarization measurement indicated a higher membrane fluidity of MEL-W than the other two groups. Fourier transform infrared spectroscopy (FT-IR) showed changes in the composition and/or structure of membrane lipids in MEL-W, with decreases in secondary structures of proteins such as alpha-helix, turns and bends and random coil, in comparison to MEL and MEL-M. The osmotic fragility curves indicated that MEL-W was more fragile and micropipette experiments showed that they had increased elasticity and reduced deformability in comparison to MEL and MEL-M. The adhesion assay with the use of the flow chamber revealed a lower adhesion rate of MEL-W to endothelial cells at high shear stress. The present study on the molecular biology with biophysics of MEL cells contributes to our knowledge on the tumor suppressor gene p53. |
RT-PCR amplification of RNA extracted from formalin-fixed, paraffin-embedded oral cancer sections: analysis of p53 pathway. | We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs. |
Invasion of normal human fibroblasts induced by v-Fos is independent of proliferation, immortalization, and the tumor suppressors p16INK4a and p53. | Invasion is generally perceived to be a late event during the progression of human cancer, but to date there are no consistent reports of alterations specifically associated with malignant conversion. We provide evidence that the v-Fos oncogene induces changes in gene expression that render noninvasive normal human diploid fibroblasts highly invasive, without inducing changes in growth factor requirements or anchorage dependence for proliferation. Furthermore, v-Fos-stimulated invasion is independent of the pRb/p16(INK4a) and p53 tumor suppressor pathways and telomerase. We have performed microarray analysis using Affymetrix geneChips, and the gene expression profile of v-Fos transformed cells supports its role in the regulation of invasion, independent from proliferation. We also demonstrate that invasion, but not proliferation, is dependent on the activity of the up-regulated epidermal growth factor receptor. Taken together, these results indicate that AP-1-directed invasion could precede deregulated proliferation during tumorigenesis and that sustained activation of AP-1 could be the epigenetic event required for conversion of a benign tumor into a malignant one, thereby explaining why many malignant human tumors present without an obvious premalignant hyperproliferative dysplastic lesion. |
DNA damage tumor suppressor genes and genomic instability. | Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and the development of cancer in multicellular organisms. The protein kinases ATM and ATR, as well as their downstream substrates Chk1 and Chk2, are central players in checkpoint activation in response to DNA damage. Histone H2AX, ATRIP, as well as the BRCT-motif-containing molecules 53BP1, MDC1, and BRCA1 function as molecular adapters or mediators in the recruitment of ATM or ATR and their targets to sites of DNA damage. The increased chromosomal instability and tumor susceptibility apparent in mutant mice deficient in both p53 and either histone H2AX or proteins that contribute to the nonhomologous end-joining mechanism of DNA repair indicate that DNA damage checkpoints play a pivotal role in tumor suppression. |
Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. | Pifithrin-alpha (PFTalpha) was originally thought to be a specific inhibitor of signaling by the tumor suppressor protein p53. However, the laboratory that discovered pifithrin recently reported that the compound also inhibits heat shock and glucocorticoid receptor (GR) signaling, and they suggested that PFTalpha targets a factor common to all three signal transduction pathways, such as the hsp90/hsp70-based chaperone machinery (Komarova, E. A., Neznanov, N., Komarov, P. G., Chernov, M. V., Wang, K., and Gudkov, A. V. (2003) J. Biol. Chem. 278, 15465-15468). Because it is important for the mechanistic study of this machinery to identify unique inhibitors of chaperone action, we have examined the effect of PFTalpha on transcriptional activation, the hsp90 heterocomplex assembly, and hsp90-dependent nuclear translocation for both p53 and the GR. At concentrations where PFTalpha blocks p53-mediated induction of p21/Waf-1 in human embryonic kidney cells, we observed no inhibition of GR-mediated induction of a chloramphenicol acetyl transferase reporter in LMCAT cells. PFTalpha did, however, cause a left shift in the dexamethasone dose response curve by increasing intracellular dexamethasone concentration, apparently by competing for dexamethasone efflux from the cell. The assembly of p53 or GR heterocomplexes with hsp90 and immunophilins was not affected by PFTalpha either in vivo or in vitro and did not affect the nuclear translocation of either transcription factor. Thus, we conclude that PFTalpha does not inhibit GR-mediated induction or the function of the chaperone machinery, and, as originally thought, it may specifically inhibit p53 signaling by acting at a stage after p53 translocation to the nucleus. |
Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. | Tumor development is dependent upon the inactivation of two key tumor-suppressor networks, p16(Ink4a)-cycD/cdk4-pRB-E2F and p19(Arf)-mdm2-p53, that regulate cellular proliferation and the tumor surveillance response. These networks are known to intersect with one another, but the mechanisms are poorly understood. Here, we show that E2F directly participates in the transcriptional control of Arf in both normal and transformed cells. This occurs in a manner that is significantly different from the regulation of classic E2F-responsive targets. In wild-type mouse embryonic fibroblasts (MEFs), the Arf promoter is occupied by E2F3 and not other E2F family members. In quiescent cells, this role is largely fulfilled by E2F3b, an E2F3 isoform whose function was previously undetermined. E2f3 loss is sufficient to derepress Arf, triggering activation of p53 and expression of p21(Cip1). Thus, E2F3 is a key repressor of the p19(Arf)-p53 pathway in normal cells. Consistent with this notion, Arf mutation suppresses the activation of p53 and p21(Cip1) in E2f3-deficient MEFs. Arf loss also rescues the known cell cycle re-entry defect of E2f3(-/-) cells, and this correlates with restoration of appropriate activation of classic E2F-responsive genes. Our data also demonstrate a direct role for E2F in the oncogenic activation of Arf. Specifically, we observe recruitment of the endogenous activating E2Fs, E2F1, and E2F3a, to the Arf promoter. Thus, distinct E2F complexes directly contribute to the normal repression and oncogenic activation of Arf. We propose that monitoring of E2F levels and/or activity is a key component of Arfs ability to respond to inappropriate, but not normal cellular proliferation. |
Neuronal survival and p73/p63/p53: a family affair. | Elucidating the mechanisms that regulate the life versus death of mammalian neurons is important not only for our understanding of the normal biology of the nervous system but also for our efforts to devise approaches to maintain neuronal survival in the face of traumatic injury or neurodegenerative disorders. Here, we review the emerging evidence that a key survival/death checkpoint in both peripheral and central neurons involves the p53 tumor suppressor and its newly discovered family members, p73 and p63. The full-length isoforms of these proteins function as proapoptotic proteins, whereas naturally occurring N-terminal truncated variants of p73 and p63 act as prosurvival proteins, at least partially by antagonizing the full-length family members. The authors propose that together, these isoforms comprise an upstream rheostat that sums different environmental cues to ultimately determine neuronal survival during development, during neuronal maintenance in adult animals, and even following traumatic injury. |
Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. | Murine coronavirus mouse hepatitis virus (MHV) gene 1 encodes several nonstructural proteins. The functions are unknown for most of these nonstructural proteins, including p28, which is encoded at the 5 end of the MHV genome. Transient expression of cloned p28 in several different cultured cells inhibited cell growth, indicating that p28 expression suppressed cell proliferation. Expressed p28 was exclusively localized in the cytoplasm. Cell cycle analysis by flow cytometry demonstrated that p28 expression induced G(0)/G(1) cell cycle arrest. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that p28 expression resulted in an accumulation of hypophosphorylated retinoblastoma protein (pRb), tumor suppressor p53, and cyclin-dependent kinase (Cdk) inhibitor p21(Cip1). expression of p28 did not alter the amount of p53 transcripts yet increased the amount of p21(Cip1) transcripts, suggesting that p28 expression increased p53 stability and that p21(Cip1) was transcriptionally activated in a p53-dependent manner. Our present data suggest the following model of p28-induced G(0)/G(1) cell cycle arrest. Expressed cytoplasmic p28 induces the stabilization of p53, and accumulated p53 causes transcriptional upregulation of p21(Cip1). The increased amount of p21(Cip1) suppresses cyclin E/Cdk2 activity, resulting in the inhibition of pRb hyperphosphorylation. Accumulation of hypophosphorylated pRb thus prevents cell cycle progression from G(0)/G(1) to S phase. |
Neutrophil lactoferrin upregulates the human p53 gene through induction of NF-kappaB activation cascade. | Neutrophil lactoferrin (Lf) was previously shown to act as a transcriptional activator in various mammalian cells. Here, we describe that Lf specifically transactivates the p53 tumor suppressor gene through the activation of nuclear factor-kappaB (NF-kappaB) and consequently regulates p53-responsive oncogenes. In HeLa cervical carcinoma cells stably expressing Lf (HeLa-Lf), expression of mdm2 and p21waf1/cip1 as well as p53 was greatly enhanced. Transient expression of Lf also markedly transactivates transcription of a p53 promoter-driven reporter and NF-kappaB-driven reporters in various mammalian cells. However, mutation of the NF-kappaB site or treatment with an NF-kappaB inhibitor abrogated the transactivation, suggesting that NF-kappaB should play an essential role in the Lf-induced transactivation. Increased binding activity and nuclear translocation of p65 in response to Lf strongly support these findings. Furthermore, Lf-mediated NF-kappaB activation is diminished in IKKalpha- or IKKbeta-deficient mouse embryonic fibroblast cells. The activation of both IKKs and NF-kappaB by Lf is over-ridden by the expression of dominant-negative mutants of NIK, MEKK1, IKKalpha and IKKbeta. Collectively, we conclude that overexpressed Lf directly relays signals to upstream components responsible for NF-kappaB activation, thereby leading to the activation of NF-kappaB target genes. |
Wild-type p53 protein is up-regulated upon cyclic adenosine monophosphate-induced differentiation of human endometrial stromal cells. | Decidualization of the endometrial stromal compartment is critical for embryo implantation. Initiation of this differentiation process requires elevated intracellular cAMP levels. We now report a massive and sustained up-regulation of p53 tumor suppressor protein during cAMP-induced decidualization of cultured endometrial stromal cells. Nuclear accumulation of p53 was not accompanied by increased mRNA expression, suggesting stabilization of the protein as the underlying mechanism. Proteasomal degradation of p53 is known to be mediated by nuclear Mdm2. Nuclear translocation of Mdm2, in turn, is dependent on phosphorylation by protein kinase B/Akt (PKB/Akt). In cAMP-treated decidualized cells, p53 accumulation was associated with decreased nuclear Mdm2 and cytoplasmic PKB/Akt levels. Conversely, withdrawal of the decidualization stimulus resulted in morphological and biochemical dedifferentiation, disappearance of p53, but increased abundance of PKB/Akt. Furthermore, Western blot and immunohistochemical analyses of endometrial biopsies confirmed that p53 is expressed in vivo in the stromal compartment during the late secretory phase of the cycle. The observation that p53 protein expression is closely associated with decidual transformation indicates a novel role for this tumor suppressor in regulating human endometrial function. |
Setting the stage for transformation: HTLV-1 Tax inhibition of p53 function. | Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). Although the precise mechanism of HTLV-1 oncogenesis remains unclear, the pathogenesis has been linked to the pleiotropic activity of the viral transcriptional activator protein Tax. Tax has been shown to regulate viral and cellular gene expression and to functionally interfere with proteins involved in cell-cycle progression and DNA repair. This review will concentrate on the ability of Tax to promote cellular proliferation through activation of the NF-kappaB pathway while inhibiting the cell-cycle checkpoint and apoptotic function of the tumor suppressor gene p53. |
TAp63gamma can substitute for p53 in inducing expression of the maspin tumor suppressor. | Maspin is a Class II tumor suppressor protein and plays a role in tumor growth by inhibiting cellular invasion and motility. It is a member of the serpin family of protease inhibitors and has been shown to reduce angiogenesis. Maspin gene expression can be upregulated by the tumor suppressor p53. We tested 7 p53-related proteins of the p63 and p73 families for their ability to induce maspin expression. The p63 splice form TAp63gamma can substitute for p53 in activating the maspin promoter. TAp63gamma activates the promoter through the same consensus site as p53. In the DLD-1 colorectal adenocarcinoma cell line, harboring a tet-off regulated transgene, induction of TAp63gamma leads to an upregulation of maspin mRNA from the chromosomal gene. With a short lag phase also maspin protein levels are elevated after induced TAp63gamma expression. To assess a potential function of p63-dependent maspin upregulation in tumors we followed expression of p53, p63 and maspin by immunohistochemistry in hepatocellular carcinomas. Two types of tumors with wild-type or mutant p53 were assayed. Interestingly, the majority of tumors expressing only a mutated and inactive p53 protein nonetheless stain positive for maspin, whereas these tumors were positive for p63 protein expression. In summary, we show that TAp63gamma can substitute for p53 in transcriptional activation of the maspin tumor suppressor gene. TAp63gamma employs the same DNA recognition site for this activation as p53. We observe expression patterns of p53, p63 and maspin proteins in tumor tissue that may indicate also a function of maspin induction by p63 in tumors. |
Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. | Epigallocatechin-3-gallate (EGCG) has been shown to have anticarcinogenic effects in in vitro and in vivo models, and this effect is mediated at least in part by its ability to induce apoptosis in cancer cells without affecting normal cells. It has been recognized that estrogen receptor (ER)-dependent breast cancers generally have a better prognosis and are often responsive to antiestrogen therapy; however, ER-independent breast cancers are more aggressive and unresponsive to antiestrogens. Using the MDA-MB-468 human breast cancer cell line as an in vitro model of ER-negative breast cancers, we found that treatment of EGCG resulted in dose-dependent (5-80 microg/mL) and time-dependent (24-72 hours) inhibition of cellular proliferation (15-100%) and cell viability (3-78%) in MDA-MB-468 cells. Decrease in cell viability was associated with the induction of apoptosis (18-66%) which was analyzed by DNA ladder assay, fluorescence staining, and flow cytometry. Induction of apoptosis by EGCG could be corroborated to the increased expression of tumor suppressor protein p53 and its phosphorylation at Ser 15 residue. EGCG decreased the expression of antiapoptotic protein Bcl-2 but increased proapoptotic protein Bax in these cells. The increased ratio of Bax/Bcl-2 proteins after EGCG treatment may have resulted in increased release of cytochrome c from mitochondria into cytosols, increased expression of Apaf-1, and activation of caspase-3 and poly(ADP-ribose) polymerase, which may lead to apoptosis in MDA-MB-468 cells. Together, the results of this study provide evidence that EGCG possesses anticarcinogenic effect against ER-negative breast cancer cells and thus provide the molecular basis for the future development of EGCG as a novel and pharmacologically safe chemopreventive agent for breast cancer prevention. |
Relief of p53-mediated telomerase suppression by p73. | Reactivation of telomerase is a feature in many cancer cells. Telomerase activation inhibits telomere shortening, thereby preventing cell cycle arrest and apoptosis activated by shortened telomeres or chromosomal rearrangements. The tumor-suppressor gene product, p53, was previously shown to transcriptionally suppress the activation of the catalytic subunit of telomerase (hTERT). Here we have evaluated the role of p73 in hTERT regulation. We found that ectoptic expression of p73beta, in contrast to p73alpha or p53, in p53 null H1299 cells does not lead to suppression of hTERT transcription. However co-expression of p73alpha or p73beta together with p53 abolished p53-mediated hTERT suppression. This phenomenon was found to be dependent on the DNA binding ability of p73. We also show that p53-mediated suppression of hTERT transcription requires a minimum threshold level of p53, and p73 abrogates p53-mediated suppression by reducing p53 levels through the activation of HDM2. Moreover, p53-mediated hTERT suppression was not relieved by p73beta in cells depleted of HDM2 through small interfering RNA-mediated gene silencing. In addition, knockdown of HDM2 in MCF7 cells, which express moderately high levels of p73 and p53, resulted in the reduction of endogenous hTERT levels. Finally, knockdown of p73 in MCF7 cells resulted in increased p53 protein levels and a concomitant decrease in hTERT levels. Together, our data indicate a plausible way by which p73, through HDM2, can oppose p53 tumor suppressor function, thereby possibly contributing to tumorigenesis. |
Intracellular interferon triggers Jak/Stat signaling cascade and induces p53-dependent antiviral protection. | Intracellular interferons (IFNs) exert biological functions similar to those of extracellular IFNs, but the signal transduction pathway triggered by the intracellular ligands has not been fully revealed. We investigated the signaling cascade by sequence-specific knockdown of signaling molecules by means of the RNA interference. Truncated IFN-beta gene was constructed so that the N-terminal secretory signal sequence was deleted (SD.IFN-beta). Cells transfected with this construct showed phosphorylation and activation of the STAT1 without any detectable secretion of the cytokine. The MHC class I expression was significantly augmented, while the augmentation was suppressed by short interfering RNA duplexes specific for JAK1, TYK2, and IFN-alpha/beta receptor (IFNAR) 1 and 2c chains. The SD.IFN-beta also induced p53 and phosphorylation of p53 at Ser(15). Specific silencing of p53 abrogated the antiviral effect of SD.IFN-beta, suggesting that the tumor suppressor is critically involved in antiviral defense mediated by intracellular IFN. |
Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. | Treatment with epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, results in activation of p53 and induction of apoptosis in prostate cancer LnCaP cells. However, no direct evidence has delineated the role of p53 and p53-dependent pathways in EGCG-mediated apoptosis. To understand the mechanism of negative growth regulation of prostate cancer cells by EGCG we undertook a genetic approach and generated an isogenic pair of prostate carcinoma cells PC3 (p53-/-) by stably introducing a cDNA encoding wild-type p53. Treatment of the resultant cells, PC3-p53, with EGCG led to, as reported earlier in LnCaP cells, an increase in p53 protein, which exacerbated both G1 arrest and apoptosis. This response was accompanied by an increase in the levels of p21 and Bax. The cells lacking p53 continued to cycle and did not undergo apoptosis upon treatment with similar concentrations of EGCG, thus establishing the action of EGCG in a p53-dependent manner. This observation was revalidated in another prostate cancer LNCaP cells harboring wild-type p53. Inactivation of p53 using small interfering RNA (siRNA) rendered these cells resistant to EGCG-mediated apoptosis. Because p53 activation led to increase in p21 and Bax, we investigated whether these two proteins are important in this process. Ablation of p21 protein by siRNA prevented G1 arrest and apoptosis in PC3-p53 cells. The p53-dependent increase in Bax expression altered the Bax/Bcl-2 ratio and paralleled the activation of caspase 9 and 3 and cleavage of PARP. Transfection of cells with Bax siRNA abolished these effects and inhibited apoptosis but did not affect the accumulation of the cells in G1. In summary, using isogenic cell lines and siRNA, we have clearly demonstrated that EGCG activates growth arrest and apoptosis primarily via p53-dependent pathway that involves the function of both p21 and Bax such that down-regulation of either molecule confers a growth advantage to the cells. |
p53 is a suppressor of inflammatory response in mice. | Chronic inflammation is known to promote cancer, suggesting that negative regulation of inflammation is likely to be tumor suppressive. We found that p53 is a general inhibitor of inflammation that acts as an antagonist of nuclear factor kappaB (NFkappaB). We first observed striking similarities in global gene expression profiles in human prostate cancer cells LNCaP transduced with p53 inhibitory genetic element or treated with TNF, suggesting that p53 inhibits transcription of TNF-inducible genes that are largely regulated by NFkappaB. Consistently, ectopically expressed p53 acts as an inhibitor of transcription of NFkappaB-dependent promoters. Furthermore, suppression of inflammatory response by p53 was observed in vivo in mice by comparing wild-type and p53 null animals at molecular (inhibition of transcription of genes encoding cytokines and chemokines, reducing accumulation of reactive oxygen species and protein oxidation products), cellular (activation of macrophages and neutrophil clearance) and organismal (high levels of metabolic markers of inflammation in tissues of p53-deficient mice and their hypersensitivity to LPS) levels. These observations indicate that p53, acting through suppression of NFkappaB, plays the role of a general "buffer" of innate immune response in vivo that is well consistent with its tumor suppressor function and frequent constitutive activation of NFkappaB in tumors. |
Aberrant expression of tumor suppressor genes and their association with chimeric oncogenes in pediatric acute lymphoblastic leukemia. | Aberrant expression of tumor suppressor genes WT 1, RB 1, p53, homozygous deletion of p16 gene and their relationship with expression of oncogenes BCR-ABL, TEL-AML 1, MLL-AF 4, E2A-PBX 1, SIL-TAL 1 were determined in bone marrow samples of children with de novo B-lineage (n=170) and T-lineage (n=25) acute lymphoblastic leukemia (ALL). In contrast to expression of chimeric oncogenes alterations in p16, WT 1, RB 1 and p53 expression were T/B-lineage-unrestricted. Significant association between expression of MLL-AF 4 and WT 1, E2A-PBX 1 and p53; SIL-TAL 1 and homozygous deletion of p16 has been demonstrated. |
INK4a/ARF: a multifunctional tumor suppressor locus. | The INK4a/ARF locus encodes two physically linked tumor suppressor proteins, p16(INK4a) and ARF, which regulate the RB and p53 pathways, respectively. The unusual genomic relationship of the open reading frames of these proteins initially fueled speculation that only one of the two was the true tumor suppressor, and loss of the other merely coincidental in cancer. Recent human and mouse genetic data, however, have firmly established that both proteins possess significant in vivo tumor suppressor activity, although there appear to be species- and cell-type specific differences between the two. For example, ARF plays a clear role in preventing Myc-induced lymphomagenesis in mice, whereas the role for p16(INK4a) is human carcinomas is more firmly established. In this review, I discuss the evolutionary history of the locus, the relative importance of these tumor suppressor genes in human cancer, and recent information suggesting novel biochemical and physiologic functions of these proteins in vivo. |
Calcium-binding properties of wild-type and EF-hand mutants of S100B in the presence and absence of a peptide derived from the C-terminal negative regulatory domain of p53. | S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide. |
Incomplete inhibition of the Rb tumor suppressor pathway in the context of inactivated p53 is sufficient for pancreatic islet tumorigenesis. | Here, we describe the surprising residual capability of the Rb pathway to negatively regulate proliferation and tumorigenesis in a SV40 large T antigen (Tag)-driven mouse model of pancreatic islet carcinogenesis. Heterogeneous Tag expression during all progression stages suggested that a threshold level of the T antigen oncoprotein might be deterministic for beta-cell hyperproliferation and led us to hypothesize that Tag might not be fully inhibiting the tumor suppressor activity of Rb. Moreover, genomic profiling of these tumors by array CGH pointed to regions of loss on chromosomes 6 and 14, where the Rb pathway inhibitor p27 and Rb itself, respectively, reside. Indeed, genetic ablation of the p27(Kip1) or Rb genes accentuated Tag-induced tumorigenesis, with loss of Rb in particular broadly enhancing multiple parameters of tumorigenesis including the frequency and growth rates of premalignant lesions, of nascent solid tumors, and of invasive carcinomas. The data indicate that attenuation rather than complete inactivation of Rb tumor suppressor gene function, in the context of p53 inhibition, is sufficient to initiate tumorigenesis in this model of islet cell cancer, with the demonstrable possibility that subsequent losses of Rb or its regulators can enhance malignant progression. The results may be relevant to human papillomavirus (HPV)-induced cervical neoplasias where E7 oncogene expression levels or activity (in the case of intermediate/low-risk HPV subtypes) incompletely inhibits Rb tumor suppressor functions, as well as to other neoplasias where initiating oncogenic or tumor suppressor events reduce but do not abrogate Rb function. |
Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. | Malignant astrocytoma, the most prevalent primary brain tumor, is resistant to all known therapies and frequently harbors mutations that inactivate p53 and activate Ras signaling. We have generated mouse strains that lack p53 and harbor a conditional allele of the NF1 tumor suppressor that negatively regulates Ras signaling. The mice develop malignant astrocytomas with complete penetrance. The majority of tumors display characteristics of glioblastoma multiforme with concomitant alteration of signaling pathways previously described in the human counterparts of this neoplasm. We find that the sequence of tumor suppressor inactivation influences tumorigenicity and that earliest evidence of tumor formation localizes to regions of the brain that contain a multipotent stem cell population capable of in vivo differentiation into neurons and glia. |
Protein kinase C delta induces apoptosis of vascular smooth muscle cells through induction of the tumor suppressor p53 by both p38-dependent and p38-independent mechanisms. | Apoptotic death of vascular smooth muscle cells (SMCs) is a prominent feature of blood vessel remodeling. In the present study, we examined the novel PKC isoform protein kinase C delta (PKCdelta) and its role in vascular SMC apoptosis. In A10 SMCs, overexpression of PKCdelta was sufficient to induce apoptosis, whereas inhibition of PKCdelta diminished H2O2-induced apoptosis. Moreover, evidence is provided that the tumor suppressor p53 is an essential mediator of PKCdelta-induced apoptosis in SMCs. Activation of PKCdelta led to accumulation as well as phosphorylation of p53 in SMCs; this induction correlated with apoptosis. Furthermore, blocking p53 induction with small interference RNA or targeted gene deletion prevented PKCdelta-induced apoptosis, whereas restoring p53 expression rescued the ability of PKCdelta to induce apoptosis in p53 null SMCs. We also establish that PKCdelta regulates p53 at both transcriptional and post-translational levels. Specifically, the transcriptional regulation required p38 MAPK, whereas the post-translational modification, at least for serine 46, did not involve MAPK. Additionally, PKCdelta, p38 MAPK, and p53 co-associate in cells under conditions favoring apoptosis. Together, our data suggest that SMC apoptosis proceeds through a pathway that involves PKCdelta, the intermediary p38 MAPK, and the downstream target tumor suppressor p53. |
Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. | Mitochondrial DNA (mtDNA) mutations and deletions are frequently observed in cancer, and contribute to altered energy metabolism, increased reactive oxygen species (ROS), and attenuated apoptotic response to anticancer agents. The mechanisms by which cells maintain mitochondrial genomic integrity and the reason why cancer cells exhibit more frequent mtDNA mutations remain unclear. Here, we report that the tumor suppressor molecule p53 has a novel role in maintaining mitochondrial genetic stability through its ability to translocate to mitochondria and interact with mtDNA polymerase gamma (pol gamma) in response to mtDNA damage induced by exogenous and endogenous insults including ROS. The p53 protein physically interacts with mtDNA and pol gamma, and enhances the DNA replication function of pol gamma. Loss of p53 results in a significant increase in mtDNA vulnerability to damage, leading to increased frequency of in vivo mtDNA mutations, which are reversed by stable transfection of wild-type p53. This study provides a mechanistic explanation for the accelerating genetic instability and increased ROS stress in cancer cells associated with loss of p53. |
A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. | Factors that mediate p53 tumor suppressor activity remain largely unknown. In this study we describe a systematic approach to identify downstream mediators of tumor suppressor function of p53, consisting of global gene expression profiling, focused short hairpin RNA (shRNA) library creation, and functional selection of genetic elements cooperating with oncogenic Ras in cell transformation. This approach is based on our finding that repression of gene expression is a major event, occurring in response to p53 inactivation during transformation and immortalization of primary cells. Functional analysis of the subset of genes universally down-regulated in the cells that lacked functional p53 revealed BTG2 as a major downstream effector of p53-dependent proliferation arrest of mouse and human fibroblasts transduced with oncogenic Ras. shRNA-mediated knockdown of BTG2 cooperates with oncogenic Ras to transform primary mouse fibroblasts containing wild-type transcriptionally active p53. Repression of BTG2 results in up-regulation of cyclins D1 and E1 and phosphorylation of Rb and, in cooperation with other oncogenic elements, induces neoplastic transformation of primary human fibroblasts. BTG2 expression was found to be significantly reduced in a large proportion of human kidney and breast carcinomas, suggesting that BTG2 is a tumor suppressor that links p53 and Rb pathways in human tumorigenesis. |
p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. | p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition. |
Solution structure of p53 core domain: structural basis for its instability. | The 25-kDa core domain of the tumor suppressor p53 is inherently unstable and melts at just above body temperature, which makes it susceptible to oncogenic mutations that inactivate it by lowering its stability. We determined its structure in solution using state-of-the-art isotopic labeling techniques and NMR spectroscopy to complement its crystal structure. The structure was very similar to that in the crystal but far more mobile than expected. Importantly, we were able to analyze by NMR the structural environment of several buried polar groups, which indicated structural reasons for the instability. NMR spectroscopy, with its ability to detect protons, located buried hydroxyl and sulfhydryl groups that form suboptimal hydrogen-bond networks. We mutated one such buried pair, Tyr-236 and Thr-253 to Phe-236 and Ile-253 (as found in the paralogs p63 and p73), and stabilized p53 by 1.6 kcal/mol. We also detected differences in the conformation of a mobile loop that might reflect the existence of physiologically relevant alternative conformations. The effects of temperature on the dynamics of aromatic residues indicated that the protein also experiences several dynamic processes that might be related to the presence of alternative hydrogen-bond patterns in the protein interior. p53 appears to have evolved to be dynamic and unstable. |
Inhibition of the ATM/p53 signal transduction pathway by Kaposis sarcoma-associated herpesvirus interferon regulatory factor 1. | Infected cells recognize viral replication as a DNA damage stress and elicit the ataxia telangiectasia-mutated (ATM)/p53-mediated DNA damage response signal transduction pathway as part of the host surveillance mechanisms, which ultimately induces the irreversible cell cycle arrest and apoptosis. Viruses have evolved a variety of mechanisms to counteract this host intracellular innate immunity. Kaposis sarcoma-associated herpesvirus (KSHV) viral interferon regulatory factor 1 (vIRF1) interacts with the cellular p53 tumor suppressor through its central DNA binding domain, and this interaction inhibits transcriptional activation of p53. Here, we further demonstrate that KSHV vIRF1 downregulates the total p53 protein level by facilitating its proteasome-mediated degradation. Detailed biochemical study showed that vIRF1 interacted with cellular ATM kinase through its carboxyl-terminal transactivation domain and that this interaction blocked the activation of ATM kinase activity induced by DNA damage stress. As a consequence, vIRF1 expression greatly reduced the level of serine 15 phosphorylation of p53, resulting in an increase of p53 ubiquitination and thereby a decrease of its protein stability. These results indicate that KSHV vIRF1 comprehensively compromises an ATM/p53-mediated DNA damage response checkpoint by targeting both upstream ATM kinase and downstream p53 tumor suppressor, which might circumvent host growth surveillance and facilitate viral replication in infected cells. |
The CDK inhibitor p18Ink4c is a tumor suppressor in medulloblastoma. | Medulloblastoma (MB) is the most common malignant pediatric brain tumor which is thought to originate from cerebellar granule cell precursors (CGNPs) that fail to properly exit the cell cycle and differentiate. Although mutations in the Sonic Hedgehog (Shh) signaling pathway occur in 30% of cases, genetic alterations that account for MB formation in most patients have not yet been identified. We recently determined that the cyclin D-dependent kinase inhibitor, p18(Ink4c), is expressed as CGNPs exit the cell cycle, suggesting that this protein might play a central role in arresting the proliferation of these cells and in timing their subsequent migration and differentiation. In mice, disruption of Ink4c collaborates independently with loss of p53 or with inactivation of the gene (Ptc1) encoding the Shh receptor, Patched, to induce MB formation. Whereas loss of both Ink4c alleles is required for MB formation in a p53-null background, Ink4c is haplo-insufficient for tumor suppression in a Ptc(1+/-) background. Moreover, MBs derived from Ptc(1+/-) mice that lack one or two Ink4c alleles retain wild-type p53. Methylation of the INK4C (CDKN2C) promoter and complete loss of p18(INK4C) protein expression were detected in a significant fraction of human MBs again pointing toward a role for INK4C in suppression of MB formation. |
Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. | Interferon regulatory factor 3 (IRF3) is a transcriptional factor that plays a crucial role in activation of innate immunity and inflammation in response to viral infection. We investigated the biological function of IRF3 overexpressed in somatic cells such as fibroblasts and astrocytes. Similar to overexpression of oncogenic H-ras in the normal human fibroblast, overexpression of IRF3 in human fibroblast BJ cells was shown to decrease cell growth and increase senescence-associated beta-galactosidase activity by activating a p53 tumor suppressor. BCNU, a DNA damage agent, further accelerated p53 function and cell death in the IRF3-overexpressed BJ cells compared to control BJ cells, without increased expression of IRF3 target genes. IRF3 failed to activate p53 function and cell growth inhibition in BJ cells downregulating p53 by RNAi-mediated p53 knockdown. Furthermore, enforced expression of IRF3 did not show any effect of cell growth inhibition in astrocytes or embryonic fibroblasts derived from the p53(-/-) mouse. When compared to control BJ cells, BJ cells which downregulated IRF3 by RNAi-mediated IRF3 knockdown showed extended in vitro life span. Taken together, the present study indicates that IRF3 should be a novel inducer of cell growth inhibition and cellular senescence through activation of p53 tumor suppressor. |
Genetic mapping of a putative tumor suppressor locus that influences tumorigenesis and metastasis in mice. | The tumor suppressor TP53 is mutated in approximately 70% of Li-Fraumeni syndrome (LFS) families; however, other genes may lead to the predisposition to tumors in other families. We developed a mouse model to search for other tumor suppressors that may be involved in the syndrome. Inbred CE/J mice, which succumb to multiple types of tumors similar to those found in LFS, were crossed with the Trp53-null 129-Trp53tm1Tyj mouse. We monitored the tumor onset and type and found a significant earlier tumor onset in the CE/J:129-Trp53tm1Tyj mice compared with 129-Trp53tm1Tyj mice with a Trp53-null allele. Additionally, in CE/J:129-Trp53tm1Tyj-Trp53+/- mice, the tumors metastasize, which does not occur in other strains of mice. Using simple-sequence length polymorphism analysis for loss of heterozygosity in tumors, we identified a putative tumor suppressor locus within 1 cM on mouse chromosome 11, which encompasses 12 mapped genes. |
p53 stabilization and transactivation by a von Hippel-Lindau protein. | von Hippel-Lindau (VHL) disease is a rare autosomal dominant cancer syndrome. Although hypoxia-inducible factor-alpha (HIFalpha) is a well-documented substrate of von Hippel-Lindau tumor suppressor protein (pVHL), it remains unclear whether the dysregulation of HIF is sufficient to account for de novo tumorigenesis in VHL-deleted cells. Here we found that pVHL directly associates with and stabilizes p53 by suppressing Mdm2-mediated ubiquitination and nuclear export of p53. Moreover, upon genotoxic stress, pVHL invoked an interaction between p53 and p300 and the acetylation of p53, which ultimately led to an increase in p53 transcriptional activity and p53-mediated cell cycle arrest and apoptosis. These results suggest that the tumor suppressor pVHL has an unexpected function to upregulate the tumor suppressor p53. |
p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. | Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability. |
ASPP2 is a haploinsufficient tumor suppressor that cooperates with p53 to suppress tumor growth. | ASPP2 stimulates the apoptotic function of the p53 family in vivo. We show here that ASPP2-/- pups died before weaning. This postnatal lethality was significantly enhanced in p53+/- background and both deletions are synthetic lethal. ASPP2+/- mice developed spontaneous tumors. The tumor onset was accelerated by gamma-irradiation or in p53+/- background. Tumors derived from ASPP2+/- mice retained wild-type ASPP2 allele even though some of them lost p53. These provide the first genetic evidence that ASPP2 is a haploinsufficient tumor suppressor that shares overlapping function(s) with p53 in mouse development and tumor suppression. |
GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. | GAS41 is a common subunit of the TIP60 and SRCAP complexes and is essential for cell growth and viability. Here, we report that GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Either GAS41 small interfering RNA-mediated knockdown of GAS41 expression or specific interruptions of the carboxy-terminal coiled-coil motif of the GAS41 protein activate the p53 tumor suppressor pathway, as evidenced by p53 up-regulation, p53 serine-15 phosphorylation, and p21 transcriptional activation. Activation of the p53 pathway does not result from changes in TIP60 complex assembly or TIP60 coactivator functions for p53, since a TIP60 complex containing a coiled-coil mutant of GAS41 retains the same composition and histone acetyltransferase activity as its wild-type counterpart and since mutant GAS41 does not compromise ectopic p53-dependent transcriptional activation in a reporter gene assay. Finally, we demonstrate that GAS41 is prebound to the promoters of two p53 tumor suppressor pathway genes (p21 and p14ARF) in normal unstressed cells but is dissociated from both promoters in response to stress signals that activate p53. Our data suggest that GAS41 plays a role in repressing the p53 tumor suppressor pathway during the normal cell cycle by a TIP60-independent mechanism. |
Oscillations and variability in the p53 system. | Understanding the dynamics and variability of protein circuitry requires accurate measurements in living cells as well as theoretical models. To address this, we employed one of the best-studied protein circuits in human cells, the negative feedback loop between the tumor suppressor p53 and the oncogene Mdm2. We measured the dynamics of fluorescently tagged p53 and Mdm2 over several days in individual living cells. We found that isogenic cells in the same environment behaved in highly variable ways following DNA-damaging gamma irradiation: some cells showed undamped oscillations for at least 3 days (more than 10 peaks). The amplitude of the oscillations was much more variable than the period. Sister cells continued to oscillate in a correlated way after cell division, but lost correlation after about 11 h on average. Other cells showed low-frequency fluctuations that did not resemble oscillations. We also analyzed different families of mathematical models of the system, including a novel checkpoint mechanism. The models point to the possible source of the variability in the oscillations: low-frequency noise in protein production rates, rather than noise in other parameters such as degradation rates. This study provides a view of the extensive variability of the behavior of a protein circuit in living human cells, both from cell to cell and in the same cell over time. |
Genomic instability in precancerous lesions before inactivation of tumor suppressors p53 and APC in patients. | The etiology and significance of genomic instability (GIN), a hallmark of human cancers, remains controversial. The paradigm that inactivation of tumor suppressors [e.g. p53 or adenomatous polyposis coli (APC) genes] leads to GIN is largely based on experiments in vitro and in animal models. It remains unclear whether GIN is a cause or a result of cancer, particularly in patients. Precancerous Barretts esophagus (BE) provides a clinical model to investigate GIN in cancer progression. We analyzed specimens from endoscopic biopsies or esophagectomies in patients with BE (ten cases, including five cases with multilayered epithelium (ME)), BE-associated esophageal adenocarcinoma (ten cases), or with normal gastro-esophageal junction (five cases). Chromosomal enumeration probe Cep 7, 11, 12, 17 and 18 were detected by fluorescence in situ hybridization (FISH). expression of p53 and APC were determined by immunohistochemistry. Increased p53 expression, a measurement of p53 mutations, was observed in BE with high grade dysplasia (HGD) and in BE-associated esophageal cancer (EC). The expression of wild type APC was decreased in BE with HGD and in advanced EC. Chromosomal abnormalities were found in all EC samples. Numeric changes of chromosome 7, 11 and 12 were observed in BE in 14%, 64% and 43% of cases, respectively. Aneusomy of chromosome 11 and 12 were found in ME and in BE without dysplasia, in the presence of normal expression pattern of p53 and APC. Our results suggest that GIN is an early event that occurs at precancerous stages prior to changes in tumor suppressor genes (p53 and APC) in BE-associated tumorigenesis in patients, suggesting that GIN may serve as a causative link between chronic inflammation and cancer. |
[Rhabdomyosarcoma development in Trp53/fos mutant mice: tumor suppressor functions of the Fos protooncogene]. | Rhabdomyosarcoma is the most common soft tissue sarcoma in children, yet the genetic changes causing this disease are poorly understood. The Fos protein, a major component of the AP-1 transcription factor, is essential for osteoclast differentiation, acts as an oncogene, potentiates transforming signals and controls invasive growth and angiogenesis during tumor progression. To genetically investigate a potential interaction between the p53 and Fos pathways, Trp53/Fos double knock-out mice were generated. These mice develop highly proliferative and invasive rhabdomyosarcomas of the facial and orbital regions with more than 90% penetrance at 6 months of age. expression of Fos in Trp53/Fos mutant rhabdomyosarcoma cell lines established from primary tumors is associated with enhanced apoptosis and downregulation of Pax7 expression. Our results show that Trp53/Fos double knock-out mice recapitulate major aspects of human rhabdomyosarcoma development and therefore provide a mouse model for the human disease. Furthermore, this study identifies a novel and unexpected tumor suppressive function of the Fos proto-oncogene. |
The Wnt signaling pathway has tumor suppressor properties in retinoblastoma. | Retinoblastoma is a pediatric retinal tumor caused by mutational inactivation of the tumor suppressor pRb. Additional genetic changes, as yet unidentified, are believed to be required for tumor initiation. mutations in the Wnt signaling pathway have been implicated in the pathogenesis of many cancers. Multiple Wnt pathway genes are expressed in the retina and the pRb and Wnt pathways interact biochemically, raising the possibility that alterations in the Wnt pathway contribute to retinoblastoma. Our studies showed that Wnt signaling activation significantly decreased the viability of retinoblastoma cell lines by inducing cell cycle arrest, which was associated with upregulated p53. Furthermore, immunolocalization of the Wnt signaling mediator beta-catenin in human and mouse retinoblastoma tissue indicated that canonical Wnt signaling is suppressed in tumors in vivo. These studies are consistent with the Wnt pathway acting as a tumor suppressor in retinoblastoma and suggest that loss of Wnt signaling is tumorigenic in the retina. |
Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. | The transformation potential of Simian Virus 40 depends on the activities of large T-antigen (LTag), which interacts with several cellular tumor suppressors including the important "guardian" of the genome, p53. Inhibition of p53 function by LTag is necessary for both efficient viral replication and cellular transformation. We determined the crystal structure of LTag in complex with p53. The structure reveals an unexpected hexameric complex of LTag binding six p53 monomers. Structure-guided mutagenesis of LTag and p53 residues supported the p53-LTag interface defined by the complex structure. The structure also shows that LTag binding induces dramatic conformational changes at the DNA-binding area of p53, which is achieved partially through an unusual "methionine switch" within p53. In the complex structure, LTag occupies the whole p53 DNA-binding surface and likely interferes with formation of a functional p53 tetramer. In addition, we showed that p53 inhibited LTag helicase function through direct complex formation. |
Missense mutations of BRCA1 gene affect the binding with p53 both in vitro and in vivo. | Women with BRCA1 gene mutations have an increased risk for breast and ovarian cancer (BOC). Classification of missense variants as neutral or disease causing is still a challenge and has major implications for genetic counseling. BRCA1 is organized in an N-terminal ring-finger domain and two BRCT (breast cancer C-terminus) domains, involved in protein-protein interaction. The integrity of the C-terminal, BRCT repeat region is also critical for BRCA1 tumor suppressor function. Several molecular partners of BRCA1 have so far been identified; among them, the tumor suppressor protein p53 seems to play a major role. This study was aimed at evaluating the impact of two missense mutations, namely the W1837R and the S1841N, previously identified in BOC patients and located in the BRCT domain of the BRCA1 gene, on the binding capacity of this protein to p53. Co-immunoprecipitation assays of E. coli-expressed wild-type and mutated BRCTs challenged with a HeLa cell extract revealed, for the S1841N variant a significant reduction in the binding activity to p53, while the W1837R mutant showed an inverse effect. Furthermore, a clonogenic soft agar growth assay performed on HeLa cells stably transfected with either wild-type or mutant BRCA1 showed a marked decrease of the growth in wild-type BRCA1-overexpressing cells and in BRCA1S1841N-transfected cells, while no significant changes were detected in the BRCA1W1837R-transfected cells. These results demonstrate that: i) distinct single nucleotide changes in the BRCT domain of BRCA1 affect binding of this protein to the tumor suppressor p53, and ii) the two missense mutations here described are likely to play a role in breast tumorigenesis. We suggest that in vitro/in vivo experiments testing the effects of unclassified BRCA1 gene variants should therefore be taken in to consideration and that increased surveillance should be adopted in individuals bearing these two BRCA1 missense alterations. |
EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. | Cellular protein degradation pathways can be utilized by viruses to establish an environment that favors their propagation. Here we report that the Kaposis sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) directly functions as a component of the EC5S ubiquitin complex targeting the tumor suppressors von Hippel-Lindau (VHL) and p53 for degradation. We have characterized a suppressor of cytokine signaling box-like motif within LANA composed of an Elongin B and C box and a Cullin box, which is spatially located at its amino and carboxyl termini. This motif is necessary for LANA interaction with the Cul5-Elongin BC complex, to promote polyubiquitylation of cellular substrates VHL and p53 in vitro via its amino- and carboxyl-terminal binding domain, respectively. In transfected cells as well as KSHV-infected B lymphoma cells, LANA expression stimulates degradation of VHL and p53. Additionally, specific RNA interference-mediated LANA knockdown stabilized VHL and p53 in primary effusion lymphoma cells. Thus, manipulation of tumor suppressors by LANA potentially provides a favorable environment for progression of KSHV-infected tumor cells. |
Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies. | Neurofibromatosis type 1 (NF1) is the most common cancer predisposition syndrome affecting the nervous system, with elevated risk for both astrocytoma and peripheral nerve sheath tumors. NF1 is caused by a germline mutation in the NF1 gene, with tumors showing loss of the wild type copy of NF1. In addition, NF1 heterozygosity in surrounding stroma is important for tumor formation, suggesting an additional role of haploinsufficiency for NF1. Studies in mouse models and NF1 families have implicated modifier genes unlinked to NF1 in the severity of the disease and in susceptibility to astrocytoma and peripheral nerve sheath tumors. To determine if differences in Nf1 expression may contribute to the strain-specific effects on tumor predisposition, we examined the levels of Nf1 gene expression in mouse strains with differences in tumor susceptibility using quantitative polymerase chain reaction. The data presented in this paper demonstrate that strain background has as much effect on Nf1 expression levels as mutation of one Nf1 allele, indicating that studies of haploinsufficiency must be carefully interpreted with respect to strain background. Because expression levels do not correlate entirely with the susceptibility or resistance to tumors observed in the strain, these data suggest that either variation in Nf1 levels is not responsible for the differences in astrocytoma and peripheral nerve sheath tumor susceptibility in Nf1-/+;Trp53-/+cis mice, or that certain mouse strains have evolved compensatory mechanisms for differences in Nf1 expression. |
p53 induced growth arrest versus apoptosis and its modulation by survival cytokines. | The p53 tumor suppressor gene encodes for a transcription factor that plays a seminal role in the response of mammalian cells to physiological and environmental stress. p53 has been implicated as a major mediator of cell cycle arrest and/or apoptosis in the response of mammalian cells to stress stimuli. It appears that several determinants, including cell type, the presence or absence of survival factors in the external environment, the extent of DNA damage, the level of p53 and post-translational modifications, are involved in the choice between cell cycle arrest and apoptosis. Ongoing work on the biological functions of the p53 tumor suppressor in different cell types and under various physiological conditions will help to unravel the complex nature of molecular circuits that orchestrate the biological response to p53 activation. |
Reassessing the role of p53 in cancer and ageing from an evolutionary perspective. | The gene p53 has been fashioned as the guardian of the genome and as prototype of the tumour suppressor gene (TSG) whose function must be inactivated in order for tumours to develop. The ubiquitous expression of truncated p53 protein isoforms, results in "premature ageing" of laboratory mouse strains engineered for expressing such isoforms. These facts have been construed in the argument that p53 evolved in order to protect organisms with renewable tissues from developing cancer yet, because p53 is also an inducer of cellular senescence or apoptosis after extensive DNA damage, it becomes a limiting factor for tissue renewal by depleting tissues from stem/precursor cells thus leading to whole-organism ageing. From that point of view p53 displays antagonist pleiotropy contributing to the establishment of degenerative diseases and ageing. Therefore, tumour suppression becomes a balancing act between cancer prevention and ageing. Nevertheless, here we present current evidence showing that the aforementioned argument is rather inconsistent and unwarranted on evolutionary grounds. The evolutionary perspective indicates that p53 evolved so as to play a subtle but very important role during development while its role as a TSG is only important in animals that are protected from most sources of extrinsic mortality, thus suggesting that p53 was primarily selected for its developmental role and not as a TSG. Therefore no real antagonist pleiotropy can be attached to p53 functions and their relationship with whole-organism ageing might be a laboratory artefact. |
Reassessing the role of p53 in cancer and ageing from an evolutionary perspective. | The gene p53 has been fashioned as the guardian of the genome and as prototype of the tumour suppressor gene (TSG) whose function must be inactivated in order for tumours to develop. The ubiquitous expression of truncated p53 protein isoforms, results in "premature ageing" of laboratory mouse strains engineered for expressing such isoforms. These facts have been construed in the argument that p53 evolved in order to protect organisms with renewable tissues from developing cancer yet, because p53 is also an inducer of cellular senescence or apoptosis after extensive DNA damage, it becomes a limiting factor for tissue renewal by depleting tissues from stem/precursor cells thus leading to whole-organism ageing. From that point of view p53 displays antagonist pleiotropy contributing to the establishment of degenerative diseases and ageing. Therefore, tumour suppression becomes a balancing act between cancer prevention and ageing. Nevertheless, here we present current evidence showing that the aforementioned argument is rather inconsistent and unwarranted on evolutionary grounds. The evolutionary perspective indicates that p53 evolved so as to play a subtle but very important role during development while its role as a TSG is only important in animals that are protected from most sources of extrinsic mortality, thus suggesting that p53 was primarily selected for its developmental role and not as a TSG. Therefore no real antagonist pleiotropy can be attached to p53 functions and their relationship with whole-organism ageing might be a laboratory artefact. |
Loss of TP53 in sarcomas with 17p12 to approximately p11 gain. A fine-resolution oligonucleotide array comparative genomic hybridization study. | The amplification or gain of the p-arm of chromosome 17 is common in sarcomas, suggesting its role in carcinogenesis. Here, we report the architectural structure and targets of 17p aberrations commonly shared by osteosarcoma (OS), leiomyosarcoma (LMS) and malignant fibrous histiocytoma (MFH) of soft tissue. Two low-grade and two high-grade soft tissue LMS, three OS, and two MFH samples were studied using fine-resolution oligonucleotide-based microarray comparative genomic hybridization. Eight of the nine samples showed a loss of 17pter-->p13, the locus of tumor suppressor TP53 preceding the amplified area 17p12-->p11.2. The size and detailed architecture of the amplified region of 17p differed between the studied sarcoma entities. OS and high-grade LMS showed similar complex patterns of discontinuous amplifications with regions of gain in between. MFH and low-grade LMS showed continuous regions of gains and amplifications. Precise boundaries of the lost or gained regions were determined, and in addition to the previously suggested targets of the region, ELAC and FLCN were amplified in all the sarcoma entities. |
Regulation of Notch1 gene expression by p53 in epithelial cells. | The E6 protein of cervical cancer-associated human papillomaviruses (HPVs) is known to suppress keratinocyte differentiation through unidentified mechanisms. Notch1 is a determinant of keratinocyte differentiation and functions as a tumor suppressor in mammalian epidermis. Here, we report that the Notch1 gene is a novel target of p53 and can be down-regulated by E6 through p53 degradation in normal human epithelial cells. Thus, inactivation of p53 by E6 or short-hairpin RNA (shRNA) resulted in reduced Notch1 expression at the transcription level, and a p53-responsive element could be identified in the Notch1 promoter. The expression of E6, p53 shRNA, or Notch1 shRNA suppressed both spontaneous keratinocyte differentiation in culture and its induction upon DNA damage. Furthermore, the induction of Notch1 and differentiation makers as well as thickening of the epidermal layer upon UV irradiation was observed in wild-type but not in p53-deficient mouse skin. Together, our findings not only demonstrate a novel link between p53 and Notch1 in keratinocyte differentiation upon genotoxic stress but also suggest a novel tumor suppressor mechanism of p53 in the development of squamous cell carcinomas, including HPV-induced tumors. |
A literature review of molecular markers predictive of clinical response to cytotoxic chemotherapy in patients with lung cancer. | BACKGROUND: To find candidate genes for a predictive chemosensitivity test in patients with lung cancer by using a literature review. METHODS: Using MEDLINE searches, "in vitro chemosensitivity associated genes" and articles on association of the gene alteration with clinical chemosensitivity in lung cancer patients were selected. We calculated odds ratios (ORs) and their 95% confidence intervals (95% CIs) of response rates for patients who had tumors with or without gene alteration. Combined ORs and 95% CIs were estimated using the DerSimonian-Laird method. RESULTS: Of the 80 in vitro chemosensitivity-associated genes identified, 13 genes were evaluated for association with clinical chemosensitivity in 27 studies. The median (range) number of patients in each study was 50 (range, 28-108). The response rates of lung cancer with high and low P-glycoprotein expression were 0% and 73% to 85%, respectively (p < 0.001). Glutathione S-transferase pi expression (OR 0.22, 95% CI 0.06-0.79), excision repair cross-complementing 1 alterations (combined OR 0.53, 95% CI 0.28-1.01; p = 0.055), and tumor suppressor p53 mutation (combined OR 0.25, 95% CI 0.12-0.52) were associated with clinical chemosensitivity. CONCLUSION: In total, 80 in vitro chemosensitivity-associated genes were identified in the literature, and high and low P-glycoprotein, glutathione S-transferase pi expression, excision repair cross-complementing 1 alterations, and tumor suppressor p53 mutation were candidates for future clinical trials of chemosensitivity tests in lung cancer patients. |
Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. | p53 is an important tumor suppressor, normally preventing cancer development via apoptosis. A genomic Arg72Pro substitution in the p53 protein has important influence on cell death via apoptosis, which could be beneficial. We therefore tested the hypotheses that this polymorphism influences longevity, survival after a cancer diagnosis, and risk of cancer in the general population. We examined a cohort of 9,219 participants ages 20-95 from the Danish general population with 100% follow-up. The overall 12-yr survival was increased in p53 Arg/Pro heterozygotes with 3% (P = 0.003) and in Pro/Pro homozygotes with 6% (P = 0.002) versus Arg/Arg homozygotes, corresponding to an increase in median survival of 3 yr for Pro/Pro versus Arg/Arg homozygotes. We also demonstrated an increased survival after the development of cancer, or even after the development of other life-threatening diseases, for Pro/Pro versus Arg/Arg homozygotes. The Arg72Pro substitution did not associate with decreased risk of cancer. In conclusion, in this large cohort from the general population, we show that a well-known functional single nucleotide polymorphism in the tumor suppressor p53 protein leads to increased longevity, but not to decreased risk of cancer. The increased longevity may be due to increased survival after a diagnosis of cancer or other life-threatening diseases. |
Activation of p53 by MEG3 non-coding RNA. | MEG3 is a maternally expressed imprinted gene suggested to function as a non-coding RNA. Our previous studies suggest that MEG3 has a function of tumor suppression. The tumor suppressor p53 plays a central role in tumor suppression and mediates the functions of many other tumor suppressors. Therefore, we hypothesized that MEG3 functions through activation of p53. We found that transfection of expression constructs for MEG3 and its isoforms results in a significant increase in p53 protein levels and dramatically stimulates p53-dependent transcription from a p53-responsive promoter. Using this as the functional assay, we demonstrated that the open reading frames encoded by MEG3 transcripts are not required for MEG3 function, and the folding of MEG3 RNA is critical to its function, supporting the concept that MEG3 functions as a non-coding RNA. We further found that MEG3 stimulates expression of the growth differentiation factor 15 (GDF15) by enhancing p53 binding to the GDF15 gene promoter. Interestingly, MEG3 does not stimulate p21(CIP1) expression, suggesting that MEG3 can regulate the specificity of p53 transcriptional activation. p53 degradation is mainly mediated by the mouse double minute 2 homolog (MDM2). We found that MDM2 levels were down-regulated in cells transfected with MEG3, suggesting that MDM2 suppression contributes at least in part to p53 accumulation induced by MEG3. Finally, we found that MEG3 is able to inhibit cell proliferation in the absence of p53. These data suggest that MEG3 non-coding RNA may function as a tumor suppressor, whose action is mediated by both p53-dependent and p53-independent pathways. |
p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis: results in Japan and comparisons with other countries. | Esophageal squamous cell carcinoma is a form of cancer that has varying incidence rates among different countries, distinct geographic areas and different ethnic groups. According to previous reports, p53 gene mutations have been identified in 20-80% of these tumors, and these mutations have occurred at an early stage. These findings suggest that such mutations play an important role in esophageal carcinogenesis, and highlight the importance of mutagens, which cause sequence alterations in the p53 gene. In order to clarify the environmental factors and the molecular mechanisms that may be responsible for the occurrence and prevention of a specific mutation in the process of esophageal carcinogenesis, we analyzed p53 gene mutations in 95 samples of esophageal squamous cell carcinoma. We further reviewed published reports investigating the frequency of p53 gene mutations in esophageal cancer from high-risk areas to normal-risk areas and compared these findings to our results in Japan. The frequency of p53 gene mutations in Japanese esophageal cancer is 47.4% and there are three prominent features: (1) a predominance of transversions, in particular the G:C to T:A transversion; (2) a relatively low frequency of transitions; and (3) a relatively high percentage of frameshift mutations. These results indicate the possible importance of the benzo[a]pyrene metabolite and oxidative DNA damage in esophageal carcinogenesis and scarcely correlate with DNA replication errors or alkylation in comparison to other gastrointestinal cancers. In addition, we observed a peculiar sequence of frameshift mutations. Taken together, these data suggest that this tumor suppressor gene plays a critical role in the multistep carcinogenesis process for esophageal squamous cell cancer. |
The associated contributions of p53 and the DNA mismatch repair protein Msh6 to spontaneous tumorigenesis. | DNA mismatch repair (MMR) is a highly conserved system that repairs DNA adducts acquired during replication, as well as some forms of exogenous/endogenous DNA damage. Additionally, MMR proteins bind to DNA adducts that are not removed by MMR and influence damage-response mechanisms other than repair. Hereditary non-polyposis colorectal cancer, as well as mouse models for MMR deficiency, illustrate that MMR proteins are required for maintenance of genetic stability and tumor suppression. In both humans and mice, the phenotype associated with Msh6-associated tumorigenesis is distinct from that of Msh2. In this study, we hypothesized that Msh6-/-;p53+/- mice would display earlier tumor onset than their Msh6-/- or p53+/- counterparts, indicating that concomitant loss of these two tumor suppressors contributes to tumorigenesis via mechanisms that are only partially interrelated. We generated a Msh6-/-;p53+/- mouse model which succumbed to malignant disease at an accelerated rate and with a tumor spectrum distinct from both Msh6-/- and p53+/- models. Alteration of tumor phenotype in the Msh6-/-;p53+/- mice included a marked increase in microsatellite instability that was associated with loss of heterozygosity of the remaining p53 allele. Also, genetic instability was inversely correlated with survival. This manuscript marks the first in vivo investigation into the association between Msh6 and p53, and their combined role in the suppression of spontaneous tumorigenesis, cell survival and genomic stability. Our results support the hypothesis that p53 and Msh6 are functionally interrelated and that, with concomitant mutation, these tumor suppressors act together to accelerate tumorigenesis. |
RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. | Although human papillomavirus (HPV) infections are the primary cause of cervical cancer, the molecular mechanism by which HPV induces cervical cancer remains largely unclear. We used two-dimensional electrophoresis with mass spectrometry to study protein expression profiling between HPV16-positive cervical mucosa epithelial H8 cells and cervical cancer Caski cells to identify 18 differentially expressed proteins. Among them, retinoblastoma-binding protein 4 (RbAp48) was selected, and its differentiation expression was verified with both additional cervical cancer-derived cell lines and human tissues of cervical intraepithelial neoplasia and cervical cancer. suppression of RbAp48 using small interfering RNA approach in H8 cells significantly stimulated cell proliferation and colony formation and inhibited senescence-like phenotype. Remarkably, H8 cells acquired transforming activity if RpAp48 was suppressed, because H8 cells stably transfected with RbAp48 small interfering RNA led to tumor formation in nude mice. In addition, overexpression of RbAp48 significantly inhibited cell growth and tumor formation. This RbAp48-mediated transformation of HPV16 is probably because of the regulation by RbAp48 of tumor suppressors retinoblastoma and p53, apoptosis-related enzymes caspase-3 and caspase-8, and oncogenic genes, including E6, E7, cyclin D1 (CCND1), and c-MYC. In brief, RbAp48, previously unknown in cervical carcinogenesis, was isolated in a global screen and identified as a critical mediator controlling the transforming activity of HPV16 in cervical cancer. |
The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. | Transformation and cancer growth are regulated by the coordinate actions of oncogenes and tumor suppressors. Here, we show that the novel E3 ubiquitin ligase HACE1 is frequently downregulated in human tumors and maps to a region of chromosome 6q21 implicated in multiple human cancers. genetic inactivation of HACE1 in mice results in the development of spontaneous, late-onset cancer. A second hit from either environmental triggers or genetic heterozygosity of another tumor suppressor, p53, markedly increased tumor incidence in a Hace1-deficient background. Re-expression of HACE1 in human tumor cells directly abrogates in vitro and in vivo tumor growth, whereas downregulation of HACE1 via siRNA allows non-tumorigenic human cells to form tumors in vivo. Mechanistically, the tumor-suppressor function of HACE1 is dependent on its E3 ligase activity and HACE1 controls adhesion-dependent growth and cell cycle progression during cell stress through degradation of cyclin D1. Thus, HACE1 is a candidate chromosome 6q21 tumor-suppressor gene involved in multiple cancers. |
Transcriptional activation of p53 by Pitx1. | Little is known about factors that stimulate transcription of the p53 tumor suppressor gene. Here, we report that the human pituitary homeobox 1 (hPitx1) transcription factor increases the expression of p53 at the mRNA and protein levels in human mammary carcinoma (MCF-7) cells. Increased p53 mRNA expression was due to activation of the p53 promoter by hPitx1. hPitx1 bound directly to the p53 promoter and functionally utilized two hPitx1 consensus elements. The predominant consensus element utilized by hPitx1 to stimulate p53 transcription was located within the first exon of the p53 gene. A hPitx1 mutant (hPitx1-R141P) acting as a dominant inhibitor repressed p53 transcription. Forced expression of hPitx1 resulted in cell-cycle arrest and p53-dependent apoptosis in p53-replete MCF-7 cells. Furthermore, hPitx1 stimulated the transcription of p53 target genes involved in cell-cycle arrest and apoptosis (p21 and PTGF-beta), again in a p53-dependent manner. Depletion of endogenous hPitx1 by small interfering RNA (siRNA) in MCF-7 cells resulted in decreased basal expression of p53 and consequently of p21 and placental transforming growth factor beta (PTGF-beta). Depletion of p53 by siRNA dramatically attenuated hPitx1-induced apoptosis in MCF-7 cells. Thus, p53 is a direct transcriptional target gene of hPitx1. This observation is concordant with the recent identification of hPitx1 as a tumor suppressor gene. |
MDM2 chaperones the p53 tumor suppressor. | The murine double minute (mdm2) gene encodes an E3 ubiquitin ligase that plays a key role in the degradation of p53 tumor suppressor protein. Nevertheless recent data highlight other p53-independent functions of MDM2. Given that MDM2 protein binds ATP, can interact with the Hsp90 chaperone, plays a role in the modulation of transcription factors and protection and activation of DNA polymerases, and is involved in ribosome assembly and nascent p53 protein biosynthesis, we have evaluated and found MDM2 protein to possess an intrinsic molecular chaperone activity. MDM2 can substitute for the Hsp90 molecular chaperone in promoting binding of p53 to the p21-derived promoter sequence. This reaction is driven by recycling of MDM2 from the p53 complex, triggered by binding of ATP to MDM2. The ATP binding mutant MDM2 protein (K454A) lacks the chaperone activity both in vivo and in vitro. Mdm2 cotransfected in the H1299 cell line with wild-type p53 stimulates efficient p53 folding in vivo but at the same time accelerates the degradation of p53. MDM2 in which one of the Zn(2+) coordinating residues is mutated (C478S or C464A) blocks degradation but enhances folding of p53. This is the first demonstration that MDM2 possesses an intrinsic molecular chaperone activity, indicating that the ATP binding function of MDM2 can mediate its chaperone function toward the p53 tumor suppressor. |
Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. | Dmp1 (Dmtf1) is activated by oncogenic Ras-Raf signaling and induces cell-cycle arrest in an Arf, p53-dependent fashion. The survival of K-ras(LA) mice was shortened by approximately 15 weeks in both Dmp1(+/-) and Dmp1(-/-) backgrounds, the lung tumors of which showed significantly decreased frequency of p53 mutations compared to Dmp1(+/+). Approximately 40% of K-ras(LA) lung tumors from Dmp1(+/+) mice lost one allele of the Dmp1 gene, suggesting the primary involvement of Dmp1 in K-ras-induced tumorigenesis. Loss of heterozygosity (LOH) of the hDMP1 gene was detectable in approximately 35% of human lung carcinomas, which was found in mutually exclusive fashion with LOH of INK4a/ARF or that of P53. Thus, DMP1 is a pivotal tumor suppressor for both human and murine lung cancers. |
Detailed mapping of chromosome 17p deletions reveals HIC1 as a novel tumor suppressor gene candidate telomeric to TP53 in diffuse large B-cell lymphoma. | Deletions in the short arm of chromosome 17 (17p) involving the tumor suppressor TP53 occur in up to 20% of diffuse large B-cell lymphomas (DLBCLs). Although inactivation of both alleles of a tumor suppressor gene is usually required for tumor development, the overlap between TP53 deletions and mutations is poorly understood in DLBCLs, suggesting the possible existence of additional tumor suppressor genes in 17p. Using a bacterial artificial chromosome (BAC) and Phage 1 artificial chromosome (PAC) contig, we here define a minimally deleted region in DLBCLs encompassing approximately 0.8 MB telomeric to the TP53 locus. This genomic region harbors the tumor suppressor Hypermethylated in cancer 1 (HIC1). Methylation-specific PCR demonstrated hypermethylation of HIC1 exon 1a in a substantial subset of DLBCLs, which is accompanied by simultaneous HIC1 deletion of the second allele in 90% of cases. In contrast, HIC1 inactivation by hypermethylation was rarely encountered in DLBCLs without concomitant loss of the second allele. DLBCL patients with complete inactivation of both HIC1 and TP53 may be characterized by an even inferior clinical course than patients with inactivation of TP53 alone, suggesting a functional cooperation between these two proteins. These findings strongly imply HIC1 as a novel tumor suppressor in a subset of DLBCLs. |
p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH. | The general transcription factor IIH is recruited to the transcription preinitiation complex through an interaction between its p62/Tfb1 subunit and the alpha-subunit of the general transcription factor IIE (TFIIEalpha). We have determined that the acidic carboxyl terminus of TFIIEalpha (TFIIEalpha(336-439)) directly binds the amino-terminal PH domain of p62/Tfb1 with nanomolar affinity. NMR mapping and mutagenesis studies demonstrate that the TFIIEalpha binding site on p62/Tfb1 is identical to the binding site for the second transactivation domain of p53 (p53 TAD2). In addition, we demonstrate that TFIIEalpha(336-439) is capable of competing with p53 for a common binding site on p62/Tfb1 and that TFIIEalpha(336-439) and the diphosphorylated form (pS46/pT55) of p53 TAD2 have similar binding constants. NMR structural studies reveal that TFIIEalpha(336-439) contains a small domain (residues 395-433) folded in a novel betabetaalphaalphaalpha topology. NMR mapping studies demonstrate that two unstructured regions (residues 377-393 and residues 433-439) located on either side of the folded domain appear to be required for TFIIEalpha(336-439) binding to p62/Tfb1 and that these two unstructured regions are held close to each other in three-dimensional space by the novel structured domain. We also demonstrate that, like p53, TFIIEalpha(336-439) can activate transcription in vivo. These results point to an important interplay between the general transcription factor TFIIEalpha and the tumor suppressor protein p53 in regulating transcriptional activation that may be modulated by the phosphorylation status of p53. |
Mixed serous carcinoma of the endometrium with trophoblastic differentiation: analysis of the p53 tumor suppressor gene suggests stem cell origin. | The pathogenesis of mixed endometrial adenocarcinoma with trophoblastic differentiation is quite unclear at times. The present study examines a serous carcinoma with choriocarcinomatous differentiation. p53 staining was seen in the serous component and the cytotrophoblastic cells of the choriocarcinomatous component, but not in the syncytiotrophoblastic cells. p53 mutational analysis showed a heterozygotic mutation at exon 8 for the choriocarcinomatous component and a homozygote deletion at exon 7 for the serous component. These alterations suggest that the multidirectional tumor differentiation might occur from a common stem cell in these malignancies. |
Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence. | The contribution of transcriptional activation to the p53 effector functions critical for tumor suppression, apoptosis and cellular senescence, remains unclear because of p53s ability to regulate diverse cellular processes in a transactivation-independent manner. Dissociating the importance of transactivation from other p53 functions, including regulating transcriptional repression, DNA replication, homologous recombination, centrosome duplication, and mitochondrial function, has been difficult because of overlapping motifs for these functions in the amino terminus. To determine the relative contribution of these activities and transactivation to p53 function, we generated knockin mice expressing a p53 mutant lacking domains involved in these transactivation-independent functions, while remaining competent for transactivation through fusion to the Herpes Simplex Virus VP16 transactivation domain. This chimeric mutant, termed p53(VP16), robustly activates the transcription of a range of p53 targets involved in both apoptosis and senescence. Intriguingly, despite being transactivation-competent, this chimeric protein shows selectivity in p53 effector function in mouse fibroblasts, with a capacity to trigger senescence but not apoptosis under a variety of conditions. Our study highlights the central role of p53 transactivation for senescence while suggesting that transactivation is insufficient for apoptosis, and provides insight into the mechanisms by which p53 serves as a tumor suppressor. |
Tumor suppressor ARF promotes non-classic proteasome-independent polyubiquitination of COMMD1. | Although the tumor suppressor ARF is generally accepted for its essential role in activating the p53 pathway, its p53-independent function has also been proposed. Here, we report that ARF associates with COMMD1 and promotes Lys(63)-mediated polyubiquitination of COMMD1 in a p53-independent manner. We found that ARF interacts with COMMD1 in vivo. Deletion analysis of ARF suggested that the N-terminal amino acids 15-45 are important for its interaction with COMMD1. In addition, we found that endogenous ARF redistributes from the nucleolus to the nucleoplasm and interacts with COMMD1 when DNA is damaged by actinomycin D. Interestingly, we found that ARF promotes the polyubiquitination of COMMD1 through Lys(63) of ubiquitin but not the polyubiquitination of Lys(48), which does not target COMMD1 for proteasome-dependent proteolysis. Moreover, ARF mutants lacking the domain interacting with COMMD1 did not promote COMMD1 polyubiquitination, indicating that physical association is a prerequisite condition for the polyubiquitination process. Together, these data suggest that the ability to promote Lys(63)-mediated polyubiquitination of COMMD1 is a novel property of ARF independent of p53. |
The TP53 Arg72Pro polymorphism and lung cancer risk in a population of Northern Spain. | SUMMARY: Polymorphisms in tumor suppressor genes might contribute to the individual susceptibility to develop different types of cancer. Alterations in genes involved in cell cycle regulation and apoptosis, as tumor suppressor gene TP53, can lead to malignant transformations increasing the risk of developing cancer. We have investigated effects of polymorphism Arg72Pro on lung cancer risk, focusing on smoking and histology. Our study is a hospital-based case-control study designed with 589 lung cancer patients mainly with squamous cell carcinoma (215), adenocarcinoma (156) and small cell carcinoma (90), and 582 control subjects, matched in ethnicity, age and gender. Genotypes were determined by PCR-RFLP and the results were analysed using multivariate unconditional logistic regression, adjusted for age, gender and smoking status. The analysis showed a statistically significant increase of lung cancer risk in Pro carriers (Arg/Pro and Pro/Pro) (adjusted OR=1.32; 95% CI=1.03-1.69), especially for ever smokers (adjusted OR=1.34; 95% CI=1.04-1.73), heavy smokers (adjusted OR=1.48; 95% CI=1.01-2.16) and smokers of exclusively black tobacco (adjusted OR=1.45; 95% CI=1.04-2.00). Moreover, Pro carriers present an increased risk of developing small cell lung cancer (adjusted OR=1.70; 95% CI=1.07-2.69) and cancer in stage IV for NSCLC (adjusted OR=1.56; 95% CI=1.07-2.27). Our results suggest that polymorphism Arg72Pro in tumor suppressor gene TP53 increases the risk of lung cancer. The effect is especially strong for small cell lung cancer (SCLC) and heavy smokers. |
A UVB fingerprint mutation on the p53 tumor suppressor gene decreases in vitro. | The culture of tissue-derived human cells is an important aspect of tissue engineering. Prior to transplantation, the quality of the cultured cells/tissue should be routinely tested so that any enrichment of procarcinogenic cells can be excluded. On this account, a UVB-induced p53 fingerprint mutation would be a valuable quality control marker for skin cells cultured for use in tissue engineering. We developed an allele-specific real-time polymerase chain reaction assay based on SYBR Green which can quantitatively detect CC-TT transitions in the tumor suppressor gene p53. To analyze the transition 281/282, we used DNA from HaCaT cells, a keratinocyte cell line containing the investigated mutation, as a standard to determine the mutation frequency in cultured cutaneous cells. We analyzed a variety of skin cells grown in culture and found a notable decrease in the UVB fingerprint mutation in fibroblasts during proliferation. Furthermore, we quantified the total amount of mutated DNA in different cutaneous cells and detected a significantly higher level in melanocytes. These results are consistent with findings obtained in our laboratory concerning the common deletion, the most frequently reported mutation in the mitochondrial genome, which suggest a positive influence of prolonged in vitro cell proliferation on the quality of genomic DNA. |
Structural biology of the tumor suppressor p53. | The tumor suppressor protein p53 induces or represses the expression of a variety of target genes involved in cell cycle control, senescence, and apoptosis in response to oncogenic or other cellular stress signals. It exerts its function as guardian of the genome through an intricate interplay of independently folded and intrinsically disordered functional domains. In this review, we provide insights into the structural complexity of p53, the molecular mechanisms of its inactivation in cancer, and therapeutic strategies for the pharmacological rescue of p53 function in tumors. p53 emerges as a paradigm for a more general understanding of the structural organization of modular proteins and the effects of disease-causing mutations. |
Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 angstroms resolution. | tumor suppressor p53 is a sequence-specific DNA-binding protein and its central DNA-binding domain (DBD) harbors six hotspots (Arg175, Gly245, Arg248, Arg249, Arg273 and Arg282) for human cancers. Here, the crystal structure of a low-frequency hotspot mutant, p53DBD(R282Q), is reported at 1.54 angstroms resolution together with the results of molecular-dynamics simulations on the basis of the structure. In addition to eliminating a salt bridge, the R282Q mutation has a significant impact on the properties of two DNA-binding loops (L1 and L3). The L1 loop is flexible in the wild type, but it is not flexible in the mutant. The L3 loop of the wild type is not flexible, whereas it assumes two conformations in the mutant. Molecular-dynamics simulations indicated that both conformations of the L3 loop are accessible under biological conditions. It is predicted that the elimination of the salt bridge and the inversion of the flexibility of L1 and L3 are directly or indirectly responsible for deactivating the tumor suppressor p53. |
Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. | The glutathione S-transferase P1 (GSTP1) is involved in multiple cellular functions, including phase II metabolism, stress response, signaling, and apoptosis. The mechanisms underlying the significantly high GSTP1 expression in many human tumors are, however, currently not well understood. We report here that the GSTP1 gene is a heretofore unrecognized downstream transcriptional target of the tumor suppressor p53. We identified a p53-binding motif comprising two consecutive half-sites located in intron 4 of the GSTP1 gene and is highly homologous to consensus p53-binding motifs in other p53-responsive genes. Using a combination of electrophoretic mobility shift assay and DNase I footprinting analyses, we showed that wild-type p53 protein binds to the GSTP1 p53 motif and luciferase reporter assays showed the motif to be transcriptionally functional in human tumor cells. In a temperature-sensitive p53-mutant cells, levels of both p21/WAF1 and GSTP1 gene transcripts increased time dependently when cells were switched from the inactive mutant state to the wild-type p53 state. Small interfering RNA-mediated reduction of p53 expression resulted in a specific decrease in GSTP1 expression and in tumor cells with mutated p53; adenovirally mediated expression of wild-type p53 increased GSTP1 expression significantly. In a panel of early-passage brain tumor cultures from patients, high levels of GSTP1 transcripts and protein were associated with wild-type p53 and, conversely, low GSTP1 levels with mutant p53. p53 expression knockdown by small interfering RNA increased cisplatin sensitivity. The ability of wild-type p53 to transcriptionally activate the human GSTP1 gene defines a novel mechanism of protecting the genome and, potentially, of tumor drug resistance. |
Prepubertal physical activity up-regulates estrogen receptor beta, BRCA1 and p53 mRNA expression in the rat mammary gland. | Findings in BRCA1 mutation carriers suggest that physical activity, particularly during childhood, may be linked to a reduced risk of developing breast cancer. We investigated whether physical activity at puberty alters the expression of BRCA1 and two other tumor suppressor genes--p53 and estrogen receptor (ER)-beta--in rats. In addition, the effects on ER-alpha expression, mammary proliferation and functional epithelial differentiation were investigated as markers of altered mammary cancer risk in rats exposed to regular physical activity at puberty. Female Sprague Dawley rat pups were randomized to voluntary exercise, sham-exercise control and non-manipulated control groups. Treadmill training (20-25 m/min, 15% grade, 30 min/day, 5 days/week) started on postnatal day 14 and continued through day 32. Third thoracic mammary glands (n = 5 per group and age) were obtained at days 32, 48 and 100 and assessed for changes in morphology through wholemounts, and at 100 days cell proliferation by using Ki67 staining, protein levels of ER-alpha and ER-beta by immunohistochemistry, and mRNA expression levels of BRCA1, p53, ER-alpha and ER-beta by real-time PCR. Mammary glands of rats exposed to exercise during puberty contained fewer terminal end buds (TEBs) and a higher number of differentiated alveolar buds and lobules than the sham controls. However, cell proliferation was not significantly altered among the groups. ER-alpha protein levels were significantly reduced, while ER-beta levels were increased in the mammary ducts and lobular epithelial structures of 100-day old rays which were voluntarily exercised at puberty, compared to sham controls. ER-beta, BRCA1 and p53 mRNA levels were significantly higher in the mammary glands of 100-day-old exercised versus sham control rats. Pubertal physical activity reduced mammary epithelial targets for neoplastic transformation through epithelial differentiation and it also up-regulated tumor suppressor genes BRCA1, p53 and ER-beta, and reduced ER-alpha/ER-beta ratio in the mammary gland. It remains to be determined whether the up-regulation of BRCA1, and perhaps p53, explains the protective effect of childhood physical activity against breast cancer in women who carry a germline mutation in one of the BRCA1 alleles. |
The p53 target protein Wig-1 binds hnRNP A2/B1 and RNA Helicase A via RNA. | The p53-induced Wig-1 gene encodes a double stranded RNA-binding zinc finger protein. We generated Saos-2 osteosarcoma cells expressing tetracycline-inducible Flag-tagged human Wig-1. Induction of Wig-1 expression by doxycycline inhibited cell growth in a long-term assay but did not cause any changes in cell cycle distribution nor increased fraction of apoptotic cells. Using co-immunoprecipitation and mass spectrometry, we identified two Wig-1-binding proteins, hnRNP A2/B1 and RNA Helicase A, both of which are involved in RNA processing. The binding was dependent on the presence of RNA. Our results establish a link between the p53 tumor suppressor and RNA processing via hnRNPA2/B1 and RNA Helicase A. |
Upregulation of annexin A1 expression by butyrate in human colon adenocarcinoma cells: role of p53, NF-Y, and p38 mitogen-activated protein kinase. | Annexin A1 is a member of a phospholipid and calcium binding family of proteins; it is involved in anti-inflammation and in the regulation of differentiation, proliferation, and apoptosis. Here, we show the existence of a functional binding site for the tumor suppressor p53 near the proximal CCAAT box and the fact that the basal expression of annexin A1 in human colon adenocarcinoma cells is driven by p53 at the transcriptional level. Posttranscriptional mechanisms may also play an important role in maintaining constitutive annexin A1 expression. In addition, a p53/NF-Y complex is detected bound to the p53 binding site on its promoter. Butyrate is a natural product of fiber degradation in the colon and a key regulator of colonic epithelium homeostasis. We show that butyrate, a class I and II histone deacetylase inhibitor, induces transcriptional activation of annexin A1 expression correlated with differentiation. The effect of butyrate is mediated through a release of NF-Y from the proximal CCAAT box and an enhancement of p53 binding. The interaction of p53 with the promoter is dependent on p38 MAPK activity either in the absence or in the presence of butyrate. Further, activation of p38 MAPK by this agent is required to increase annexin A1 promoter activity and to increase protein expression. |
Tumor suppression by p53 in the absence of Atm. | oncogenes can induce p53 through a signaling pathway involving p19/Arf. It was recently proposed that oncogenes can also induce DNA damage, and this can induce p53 through the Atm DNA damage pathway. To assess the relative roles of Atm, Arf, and p53 in the suppression of Ras-driven tumors, we examined susceptibility to skin carcinogenesis in 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (TPA)-treated Atm- and p53-deficient mice and compared these results to previous studies on Arf-deficient mice. Mice with epidermal-specific deletion of p53 showed increased papilloma number and progression to malignant invasive carcinomas compared with wild-type littermates. In contrast, Atm-deficient mice showed no increase in papilloma number, growth, or malignant progression. gamma-H2AX and p53 levels were increased in both Atm(+/+) and Atm(-/-) papillomas, whereas Arf(-/-) papillomas showed much lower p53 expression. Thus, although there is evidence of DNA damage, signaling through Arf seems to regulate p53 in these Ras-driven tumors. In spontaneous and radiation-induced lymphoma models, tumor latency was accelerated in Atm(-/-)p53(-/-) compound mutant mice compared with the single mutant Atm(-/-) or p53(-/-) mice, indicating cooperation between loss of Atm and loss of p53. Although p53-mediated apoptosis was impaired in irradiated Atm(-/-) lymphocytes, p53 loss was still selected for during lymphomagenesis in Atm(-/-) mice. In conclusion, in these models of oncogene- or DNA damage-induced tumors, p53 retains tumor suppressor activity in the absence of Atm. |
Microtubule-associated protein 1B light chain (MAP1B-LC1) negatively regulates the activity of tumor suppressor p53 in neuroblastoma cells. | The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses and can trigger apoptosis in many cell types, including neurons. In this study, we have shown that the Microtubule-Associated Protein 1B (MAP1B) light chain can interact with the tumor suppressor p53. We also demonstrate that both p53 and the MAP1B light chain (MAP1B-LC1) alter their localization from the cytoplasm to the nucleus when neuroblastoma cells, SH-SY5Y, are treated with doxorubicin. Additionally, we demonstrate that the MAP1B-LC1 negatively regulates p53-dependent transcriptional activity of a reporter construct driven by the p21 promoter. Consequently, MAP1B-LC1 binds to p53 and this interaction leads to the inhibition of doxorubicin-induced apoptosis in SH-SY5Y cells. |
Transcriptional role of p53 in interferon-mediated antiviral immunity. | tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516-523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposis sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene. |
Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. | The Mdmx oncoprotein has only recently emerged as a critical-independent to Mdm2-regulator of p53 activation. We have determined the crystal structure of the N-terminal domain of human Mdmx bound to a 15-residue transactivation domain peptide of human p53. The structure shows why antagonists of the Mdm2 binding to p53 are ineffective in the Mdmx-p53 interaction. |
EWS-FLI1 suppresses NOTCH-activated p53 in Ewings sarcoma. | Although p53 is the most frequently mutated gene in cancer, half of human tumors retain wild-type p53, whereby it is unknown whether normal p53 function is compromised by other cancer-associated alterations. One example is Ewings sarcoma family tumors (ESFT), where 90% express wild-type p53. ESFT are characterized by EWS-FLI1 oncogene fusions. Studying 6 ESFT cell lines, silencing of EWS-FLI1 in a wild-type p53 context resulted in increased p53 and p21(WAF1/CIP1) levels, causing cell cycle arrest. Using a candidate gene approach, HEY1 was linked to p53 induction. HEY1 was rarely expressed in 59 primary tumors, but consistently induced upon EWS-FLI1 knockdown in ESFT cell lines. The NOTCH signaling pathway targets HEY1, and we show NOTCH2 and NOTCH3 to be expressed in ESFT primary tumors and cell lines. Upon EWS-FLI1 silencing, NOTCH3 processing accompanied by nuclear translocation of the activated intracellular domain was observed in all but one p53-mutant cell line. In cell lines with the highest HEY1 induction, NOTCH3 activation was the consequence of JAG1 transcriptional induction. JAG1 modulation by specific siRNA, NOTCH-processing inhibition by either GSI or ectopic NUMB1, and siRNA-mediated HEY1 knockdown all inhibited p53 and p21(WAF1/CIP1) induction. Conversely, forced expression of JAG1, activated NOTCH3, or HEY1 induced p53 and p21(WAF1/CIP1). These results indicate that suppression of EWS-FLI1 reactivates NOTCH signaling in ESFT cells, resulting in p53-dependent cell cycle arrest. Our data link EWS-FLI1 to the NOTCH and p53 pathways and provide a plausible basis both for NOTCH tumor suppressor effects and oncogenesis of cancers that retain wild-type p53. |
A panel of p16(INK4A), MIB1 and p53 proteins can distinguish between the 2 pathways leading to vulvar squamous cell carcinoma. | Two pathways leading to vulvar squamous cell carcinoma (SCC) exist. The expression of proliferation- and cell-cycle-related biomarkers and the presence of high-risk (hr) HPV might be helpful to distinguish the premalignancies in both pathways. Seventy-five differentiated vulvar intra-epithelial neoplasia (VIN)-lesions with adjacent SCC and 45 usual VIN-lesions (32 solitary and 13 with adjacent SCC) were selected, and tested for hr-HPV DNA, using a broad-spectrum HPV detection/genotyping assay (SPF(10)-LiPA), and the immunohistochemical expression of MIB1, p16(INK4A) and p53. All differentiated VIN-lesions were hr-HPV- and p16-negative and in 96% MIB1-expression was confined to the parabasal layers. Eighty-four percent exhibited high p53 labeling indices, sometimes with parabasal extension. Eighty percent of all usual VIN-lesions were hr-HPV-positive, p16-positive, MIB1-positive and p53-negative. Five (of seven) HPV-negative usual VIN lesions, had an expression pattern like the other HPV-positive usual VIN lesions. In conclusion, both pathways leading to vulvar SCC have their own immunohistochemical profile, which can be used to distinguish the 2 types of VIN, but cannot explain differences in malignant potential. |
[Influence of prothymosin alpha and its mutants on activity of the p53 tumor suppressor]. | Overexpression of the nuclear oncoprotein prothymosin a enhanced and, in a reciprocal experiment, down-regulation of endogenous prothymosin alpha by RNA interference approach inhibited transcriptional activity of the p53 tumor suppressor in the reporter gene assay. Ectopic expression of prothymosin alpha enhanced not only p53-dependent transcription, but also intracellular level of p53 in HeLa (but not HCT116) cells. Ability to stimulate p53-dependent transcription was lost by C-terminal mutants of prothymosin alpha with impaired nuclear accumulation, but not by N-terminal deletion mutants and by the double mutant of prothymosin alpha with impaired ability to bind Keap1, suggesting that prothymosinalpha-Keap1 interaction is dispensable for p53 response. Our data suggest that the central "acidic" region of prothymosin alpha together with intact nuclear localization signal is responsible for stimulation of p53-dependent transcription. This conclusion was confirmed by the fact that another protein containing long "acidic" region and nuclear localization signal, parathymosin, was able to stimulate transcription of p53-responsive reporter gene. |
p53 and p73 in suppression of Myc-driven lymphomagenesis. | Induction of apoptosis by the tumor suppressor p53 is known to protect from Myc-driven lymphomagenesis. The p53 family member p73 is also a proapoptotic protein, which is activated in response to oncogenes like Myc. Here, we have investigated whether p73 provides a similar protection from Myc-driven lymphomas as p53. Confirming previous studies, the inactivation of a single p53 allele (p53+/-) strongly reduced the median survival of Emu-Myc transgenic mice from 103 to 39 days and was invariably associated with a loss of the wild-type p53 allele. In contrast, mutational inactivation of a p73 allele (p73+/-) reduced the median survival by only 12 days. Lymphomas that developed in the p73+/- background showed no loss of heterozygosity (LOH). Furthermore, gene expression profiling of p73+/+, p73+/- and p73-/- lymphomas indicated that p73+/- lymphomas retained p73 transcriptional activity. Subtle gene expression differences between p73+/+ and p73+/- lymphomas, however, suggest a haploinsufficient phenotype on some p73 target genes. This might help to explain why p73+/- animals succumbed to disease slightly earlier than their p73+/+ littermates (log-rank test p<0.0395) and why p73 often shows monoallelic inactivation in human lymphomas. Together these data demonstrate that in Myc-driven lymphomagenesis p73 has weak tumor suppressor activity compared with p53. |
CARF Is a vital dual regulator of cellular senescence and apoptosis. | The tumor suppressor protein, p53, is central to the pathways that monitor the stress, DNA damage repair, cell cycle, aging, and cancer. Highly complex p53 networks involving its upstream sensors and regulators, downstream effectors and regulatory feedback loops have been identified. CARF (Collaborator of ARF) was shown to enhance ARF-dependent and -independent wild-type p53 function. Here we report that (i) CARF overexpression causes premature senescence of human fibroblasts, (ii) it is vital for replicative and stress-induced senescence, and (iii) the lack of CARF function causes aneuploidy and apoptosis. We provide evidence that CARF plays a dual role in regulating p53-mediated senescence and apoptosis, the two major tumor suppressor mechanisms. |
A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. | Transcription regulates axon outgrowth and regeneration. However, to date, no transcription complexes have been shown to control axon outgrowth and regeneration by regulating axon growth genes. Here, we report that the tumor suppressor p53 and its acetyltransferases CBP/p300 form a transcriptional complex that regulates the axonal growth-associated protein 43, a well-characterized pro-axon outgrowth and regeneration protein. Acetylated p53 at K372-3-82 drives axon outgrowth, GAP-43 expression, and binds specific elements on the neuronal GAP-43 promoter in a chromatin environment through CBP/p300 signaling. Importantly, in an axon regeneration model, both CBP and p53 K372-3-82 are induced following axotomy in facial motor neurons, where p53 K372-3-82 occupancy of GAP-43 promoter is enhanced as shown by in vivo chromatin immunoprecipitation. Finally, by comparing wild-type and p53 null mice, we demonstrate that the p53/GAP-43 transcriptional module is specifically switched on during axon regeneration in vivo. These data contribute to the understanding of gene regulation in axon outgrowth and may suggest new molecular targets for axon regeneration. |
Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. | Malignant astrocytomas are infiltrative and incurable brain tumors. Despite profound therapeutic implications, the identity of the cell (or cells) of origin has not been rigorously determined. We previously reported mouse models based on conditional inactivation of the human astrocytoma-relevant tumor suppressors p53, Nf1, and Pten, wherein through somatic loss of heterozygosity, mutant mice develop tumors with 100% penetrance. In the present study, we show that tumor suppressor inactivation in neural stem/progenitor cells is both necessary and sufficient to induce astrocytoma formation. We demonstrate in vivo that transformed cells and their progeny undergo infiltration and multilineage differentiation during tumorigenesis. tumor suppressor heterozygous neural stem/progenitor cultures from presymptomatic mice show aberrant growth advantage and altered differentiation, thus identifying a pretumorigenic cell population. |
PTEN and p53 are required for hypoxia induced expression of maspin in glioblastoma cells. | In response to genotoxic stress, p53 induces the tumor suppressors maspin and PTEN. Here we demonstrate that in response to limited oxygen conditions PTEN and p53 work in tandem to induce maspin in glioblastoma cells. In response to hypoxia a portion of PTEN migrates to the nucleus and complexes with p53, while cytoplasmic PTEN prevents Mdm2 nuclear localization by attenuating Akt signaling. Subcellular distribution of PTEN in the cytoplasm or nucleus protects p53 from inactivation and degradation. The presence of nuclear PTEN and p53 coordinates the induction of maspin and p21 (both p53 gene targets) in response to hypoxia. Altering the expression of PTEN and/or p53 attenuated maspin gene induction under hypoxic conditions. Furthermore, implanting U87 (PTEN null) and PTEN reconstituted U87 cells (U87PTEN) in mice we observed by immunohistochemistry and western blot that Maspin was only detectable in cells with PTEN. The integration of PTEN and p53 into a common pathway for the induction of another tumor suppressor, Maspin, constitutes a tumor suppressor network of PTEN/p53/Mapsin that is operational under limited oxygen conditions. |
Induction of SOX4 by DNA damage is critical for p53 stabilization and function. | DNA damage response (DDR) acts as a tumorigenesis barrier, and any defects in the DDR machinery may lead to cancer. SOX4 expression is elevated in many types of tumors; however, its role in DDR is still largely unknown. Here, we show that SOX4, a new DNA damage sensor, is required for the activation of p53 tumor suppressor in response to DNA damage. Notably, SOX4 interacts with and stabilizes p53 protein by blocking Mdm2-mediated p53 ubiquitination and degradation. Furthermore, SOX4 enhances p53 acetylation by interacting with p300/CBP and facilitating p300/CBP/p53 complex formation. In concert with these results, SOX4 promotes cell cycle arrest and apoptosis, and it inhibits tumorigenesis in a p53-dependent manner. Therefore, these findings highlight SOX4 as a potential key factor in regulating DDR-associated cancer. |
Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro. | Self-assembly of peptide amphiphiles into nanostructures makes them attractive for a variety of applications in drug and peptide delivery. We here report on the interactions of micelles composed of a palmitoylated, pro-apoptotic peptide derived from p53 tumor suppressor protein with a human cancer cell line. Characterization of self-assembly in aqueous buffered solutions revealed formation of elongated rod-like micelles above a critical micelle concentration. Our results however demonstrate that monomers instead of micelles are internalized, a finding that correlates with the dynamic nature of the assemblies and the noncovalent interactions that hold them together. Internalization is shown to occur via adsorption-mediated, energy-dependent pathways, resulting in accumulation of the material in endocytic vesicles. We conclude that palmitoylation of peptides is an efficient way to increase peptide permeability inside SJSA-1 cells and that increased micelle stability would be required for intact micelle internalization. |
The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. | Hypomorphic mutation in one allele of ribosomal protein l24 gene (Rpl24) is responsible for the Belly Spot and Tail (Bst) mouse, which suffers from defects of the eye, skeleton, and coat pigmentation. It has been hypothesized that these pathological manifestations result exclusively from faulty protein synthesis. We demonstrate here that upregulation of the p53 tumor suppressor during the restricted period of embryonic development significantly contributes to the Bst phenotype. However, in the absence of p53 a large majority of Rpl24(Bst/+) embryos die. We showed that p53 promotes survival of these mice via p21-dependent mechanism. Our results imply that activation of a p53-dependent checkpoint mechanism in response to various ribosomal protein deficiencies might also play a role in the pathogenesis of congenital malformations in humans. |
Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. | tumor suppressor gene PTEN is important in the initiation and progression of human prostate carcinoma, whereas the role of TP53 remains controversial. Since Pten/Trp53 double conditional knockout mice show earlier onset and fast progression of prostate cancer when compared to Pten knockout mice, we asked whether heterozygosity of these two tumor suppressor genes was sufficient to accelerate prostatic tumorigenesis. To answer this question we examined prostatic lesion progression of Pten/Trp53 double heterozygous mice and a series of controls such as Pten heterozygous, Pten conditional knockout, Trp53 heterozygous and Trp53 knockout mice. Tissue recombination of adult prostatic epithelium coupled with embryonic rat seminal vesicle mesenchyme was used as a tool to stimulate prostatic epithelial proliferation. In our study, high-grade prostatic intraepithelial neoplasia (PIN) was found with high frequency at 8 weeks post-tissue recombination transplantation. PIN lesions in Pten/Trp53 double heterozygous mice were more severe than those seen in Pten heterozygous alone. Furthermore, morphologic features attributable to Pten or Trp53 loss appeared to be enhanced in double heterozygous tissues. LOH analysis of Pten and Trp53 in genomic DNA collected from high-grade PIN lesions in Pten heterozygous and Pten/Trp53 double heterozygous mice showed an intact wild-type allele for both genes in all samples examined. In conclusion, simultaneous heterozygosity of Pten and Trp53 accelerates prostatic tumorigenesis in this mouse model of prostate cancer independently of loss of heterozygosity of either gene. |
Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. | Cellular stress caused by genetic or environmental factors are considered to be the major inducers of cell death under pathological conditions. Induction of the apoptotic function of the tumor suppressor p53 is a common cellular response to severe genotoxic and oxidative stresses. In the nervous system, accumulation of p53 and increased p53 activity are associated with neuronal loss in acute and chronic neurodegenerative disorders. Here, we show that regulation of the p53 gene (trp53) is an integral part of a synaptic activity-controlled, calcium-dependent neuroprotective transcriptional program. Action potential (AP) bursting suppresses trp53 expression and downregulates key proapoptotic p53 target genes, apaf1 and bbc3 (puma). At the same time, AP bursting activates the nuclear calcium-induced neuroprotective gene, btg2. Depletion of endogenous p53 levels using RNA interference or expression of Btg2 renders neurons more resistant against excitotoxicity-induced mitochondrial permeability transitions and promotes neuronal survival under severe cellular stresses. We propose that suppression of p53 functions together with nuclear calcium-regulated neuroprotective genes in a coordinate and synergistic manner to promote neuronal survival through the stabilization of mitochondria against cellular stresses. |
Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. | In lymphocytes, the second messenger cyclic adenosine monophosphate (cAMP) plays a well-established antiproliferative role through inhibition of G(1)/S transition and S-phase progression. We have previously demonstrated that, during S-phase arrest, cAMP inhibits the action of S phase-specific cytotoxic compounds, leading to reduction in their apoptotic response. In this report, we provide evidence that cAMP can also inhibit the action of DNA-damaging agents independently of its effect on S phase. Elevation of cAMP in B-cell precursor acute lymphoblastic leukemia cells is shown to profoundly inhibit the apoptotic response to ionizing radiation, anthracyclins, alkylating agents, and platinum compounds. We further demonstrate that this effect depends on the ability of elevated cAMP levels to quench DNA damage-induced p53 accumulation by increasing the p53 turnover, resulting in attenuated Puma and Bax induction, mitochondrial outer membrane depolarization, caspase activation, and poly(ADP-ribose) polymerase cleavage. On the basis of our findings, we suggest that cAMP levels may influence p53 function in malignant cells that retain wild-type p53, potentially affecting p53 both as a tumor suppressor during cancer initiation and maintenance, and as an effector of the apoptotic response to DNA-damaging agents during anticancer treatment. |
Simultaneous exposure to dietary acrylamide and corn oil developed carcinogenesis through cell proliferation and inhibition of apoptosis by regulating p53-mediated mitochondria-dependent signaling pathway. | To investigate whether simultaneous exposure to acrylamide (ACR) and long-term dietary corn oil induces colon cancer by inhibiting the tumor suppressor gene p53-mediated mitochondria-dependent apoptosis in rats. Male Sprague-Dawley rats were given intraperitoneal injections of ACR at dose of 10 mg/kgbw and diets supplemented with 10% corn oil for 8 wks; and then rats were still fed with diets supplemented with 10% oil for other 48 wks. Colonic aberrant crypt foci (ACF) and tumors, including adenomas and carcinomas, were examined at 12, 24, 36, 48 week post ACR-exposure. Colonic apoptosis and cell proliferation, expression of Wild type (wt) p53, Bcl-2, Bax and caspase-3, were detected at 48 week post ACR-exposure. ACF was found at 12 week and colon cancer invasion was found at 48 week in ACR rats on long-term dietary corn oil. Apoptosis was decreased and cell proliferation was increased in colonic mucosa in ACR-treated rats on dietary corn oil compared to vehicle rats on basal diet (P < 0.05). In ACR rats on dietary corn oil, mitochondrial wt p53 was significantly inhibited through decreased mitochondrial localization of wt p53 and increased cytosolic p53, resulting in the up-regulation of Bcl-2 and the down-regulation of Bax in the mitochondria, also inhibition of the release of cytochrome-c from the mitochondria into the cytosol and protein level of caspase-3 (P < 0.05). Results suggest that simultaneous exposure to ACR and long-term dietary corn oil induces development of colon cancer partly by inhibiting the tumor suppressor gene p53-mediated mitochondria-dependent apoptosis. |
XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway. | Colorectal cancers with mutations in the p53 gene have an invasive property, but its underlying mechanism is not fully understood. Through the screening of two data sets of the genome-wide expression profile, one for p53-introduced cells and the other for the numbers of cancer tissues, we report here X-linked ectodermal dysplasia receptor (XEDAR), a member of the TNFR superfamily, as a novel p53 target that has a crucial role in colorectal carcinogenesis. p53 upregulated XEDAR expression through two p53-binding sites within intron 1 of the XEDAR gene. We also found a significant correlation between decreased XEDAR expressions and p53 gene mutations in breast and lung cancer cell lines (P=0.0043 and P=0.0122, respectively). Furthermore, promoter hypermethylation of the XEDAR gene was detected in 20 of 20 colorectal cancer cell lines (100%) and in 6 of 12 colorectal cancer tissues (50%), respectively. Thus, the XEDAR expression was suppressed to <25% of surrounding normal tissues in 12 of 18 colorectal cancer tissues (66.7%) due to either its epigenetic alterations and/or p53 mutations. We also found that XEDAR interacted with and subsequently caused the accumulation of FAS protein, another member of p53-inducible TNFR. Moreover, XEDAR negatively regulated FAK, a central component of focal adhesion. As a result, inactivation of XEDAR resulted in the enhancement of cell adhesion and spreading, as well as resistance to p53-induced apoptosis. Taken together, our findings showed that XEDAR is a putative tumor suppressor that could prevent malignant transformation and tumor progression by regulating apoptosis and anoikis. |
Mutant p53 gain of oncogenic function: in vivo evidence, mechanism of action and its clinical implications. | p53 is an indispensible tumor suppressor and exerts this function by transactivating numerous downstream target genes that play vital roles in controlling cell proliferation, apoptosis, senescence, and DNA repair. mutations in the p53 gene, which are frequently seen in human tumors, impair its tumor suppressor function. Several of these tumor-derived p53 mutants can confer further aggressive oncogenic properties such as exacerbated malignant transformation and metastatic phenotype when overexpressed in p53-null cells. This oncogene-like behavior of mutant p53 is referred to as gain of function. The exact mechanism underlying gain-of-function phenotypes, however, remains enigmatic. Recently, we have generated mice with a point mutation (p53(R172H)) in their endogenous p53 loci as a model for the human Li-Fraumeni syndrome. The mutant p53(R172H) knock-in mice spontaneously develop tumors with high frequency of metastasis, contrary to that observed in mice with p53 deletion, indicating gain of function by the mutant p53R172H. In addition, our results show that other p53 family members, p63 and p73, are involved in the gain-of-function phenotypes. We further demonstrate that mutant p53(R172H) is inherently unstable and its stabilization is required for its gain-of-function phenotypes. This review focuses on recent reports regarding the potential molecular pathways for mutant p53 gain of oncogenic function and discusses its clinical implications. |
The prolyl cis/trans isomerase cyclophilin 18 interacts with the tumor suppressor p53 and modifies its functions in cell cycle regulation and apoptosis. | The functional diversity of the tumor suppressor protein p53 is mainly regulated by protein interactions. In this study, we describe a new interaction with the peptidyl-prolyl cis/trans isomerase cyclophilin 18 (Cyp18). The interaction reduced the sequence-specific DNA binding of p53 in vitro, whereas the inhibition of the interaction increased p53-reporter gene activity in vivo. The active site of the folding helper enzyme Cyp18 was directly involved in binding. The proline-rich region (amino acids 64-91) of p53 was most likely responsible for the observed binding because a synthetic peptide comprising amino acids 68-81 of p53 inhibited this interaction, and a p53 variant containing a proline residue at position 72 (p53(P72)) interacted with Cyp18 more effectively than the corresponding p53(R72) variant. Impairment of the Cyp18-p53 interaction induced an accumulation of cells in the G2/M phase of the cell cycle, which was more pronounced when p53(P72) was expressed compared with p53(R72) in an otherwise isogenic cellular background. Moreover, p53-dependent apoptosis was elevated in Cyp18 knockout cells, suggesting an antiapoptotic potential of Cyp18-p53 complexes. Functional in vivo data hint to a possible clinical relevance of the p53-Cyp18 interaction observed. |
Transcriptional mechanisms by the coregulator MAML1. | The Mastermind-like (MAML) proteins are transcriptional coactivators for Notch signaling, an evolutionarily conserved pathway that plays several key roles in development and in human disease. The MAML family contains MAML1, MAML2, and MAML3. More recently, MAML1 has been shown to function as a coactivator for the tumor suppressor p53, the MADS box transcription enhancer factor (MEF) 2C, and beta-catenin. In addition, MAML1 has been reported to interact with the histone acetyltransferase p300, and this interaction increases p300 activity. Furthermore, MAML1 binds to CDK8, which is a subunit of the Mediator complex. The function of MAML1 as a coactivator for diverse activators, and MAML1 interaction with broadly used coactivators, suggests that MAML1 might be a key molecule that connects various signaling pathways to regulate cellular processes in normal cells and in human disease. |
Anxiety and the aging brain: stressed out over p53?. | We propose a model in which cell loss in the aging brain is seen as a root cause of behavioral changes that compromise quality of life, including the onset of generalized anxiety disorder, in elderly individuals. According to this model, as stem cells in neurogenic regions of the adult brain lose regenerative capacity, worn-out, dead, or damaged neurons fail to be replaced, leaving gaps in function. As most replacement involves inhibitory interneurons, either directly or indirectly, the net result is the acquisition over time of a hyper-excitable state. The stress axis is subserved by all three neurogenic regions in the adult brain, making it particularly susceptible to these age-dependent changes. We outline a molecular mechanism by which hyper-excitation of the stress axis in turn activates the tumor suppressor p53. This reinforces the loss of stem cell proliferative capacity and interferes with the feedback mechanism by which the glucocorticoid receptor turns off neuroendocrine pathways and resets the axis. |
The glutathione-S-transferase P1 polymorphisms correlates with changes in expression of TP53 tumor suppressor in cutaneous basal cell carcinoma. | Despite clear epidemiological and genetic evidence for X-linked prostate cancer risk, all prostate cancer genes identified are autosomal. Here, we report somatic inactivating mutations and deletion of the X-linked FOXP3 gene residing at Xp11.23 in human prostate cancer. Lineage-specific ablation of FoxP3 in the mouse prostate epithelial cells leads to prostate hyperplasia and prostate intraepithelial neoplasia. In both normal and malignant prostate tissues, FOXP3 is both necessary and sufficient to transcriptionally repress cMYC, the most commonly overexpressed oncogene in prostate cancer as well as among the aggregates of other cancers. FOXP3 is an X-linked prostate tumor suppressor in the male. Because the male has only one X chromosome, our data represent a paradigm of "single genetic hit" inactivation-mediated carcinogenesis. |
Genome integrity: linking pluripotency and tumorgenicity. | Genome integrity is a fundamental issue in both cancer and stem cell biology. A series of recent studies revealed that a tumor suppressor p53, which is required for genome integrity, is critical also for stem cell pluripotency and reprogramming, further strengthening the fundamental link between cancer and pluripotency. p53 and other tumor suppressors might be barriers to reprogramming somatic cells for the generation of induced pluripotent stem cells (iPSCs), and simultaneously and systematically destroying these barriers would improve reprogramming efficiency. Therefore, it is also crucial to determine the tumorgenicity of the cells derived from iPSCs for any future therapeutic use. |
MicroRNA 125a and its regulation of the p53 tumor suppressor gene. | microRNA (miRNA) are a class of non-coding RNA that suppress gene expression by degradation or translational inhibition of target RNA. Several miRNA have been shown to target oncogenes and recently miRNA-125b was shown to translationally and transcriptionally inhibit the p53 gene. Here, we show that an additional isomer of miRNA-125 (miRNA-125a) translationally arrests mRNA of the p53 tumor suppressor gene. The basis of this activity is the high degree of sequence homology between the seed sequence of miR-125a and the 3-UTR of p53. Our findings add miRNA-125a to the growing list of miRNA with oncogenic targets. |
Silencing of the Lats2 tumor suppressor overrides a p53-dependent oncogenic stress checkpoint and enables mutant H-Ras-driven cell transformation. | The Lats2 tumor suppressor protein has been implicated earlier in promoting p53 activation in response to mitotic apparatus stress, by preventing Mdm2-driven p53 degradation. We now report that Lats2 also has a role in an ATR-Chk1-mediated stress check point in response to oncogenic H-Ras. Activated mutant H-Ras triggers the translocation of Lats2 from centrosomes into the nucleus, coupled with an increase in Lats2 protein levels. This leads to the induction of p53 activity, upregulation of proapoptotic genes, downregulation of antiapoptotic genes and eventually apoptotic cell death. Many of the cells that survive apoptosis undergo senescence. However, a fraction of the cells escape this checkpoint mechanism, despite maintaining a high mutant H-Ras expression. These escapers display increased genome instability, as evidenced by a substantial fraction of cells with micronuclei and cells with polyploid genomes. Interestingly, such cells show markedly reduced levels of Lats2, in conjunction with enhanced hypermethylation of the Lats2 gene promoter. Our findings suggest that Lats2 might have an important role in quenching H-Ras-induced transformation, whereas silencing of Lats2 expression might serve as a mechanism to enable tumor progression. |
Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. | Aging is a complex process accompanied by a decreased capacity of cells to cope with random damages induced by reactive oxygen species, the natural by-products of energy metabolism, leading to protein aggregation in various components of the cell. Chaperones are important players in the aging process as they prevent protein misfolding and aggregation. Small chaperones, such as small heat shock proteins, are involved in the refolding and/or disposal of protein aggregates, a feature of many age-associated diseases. In Drosophila melanogaster, mitochondrial Hsp22 (DmHsp22), is localized in the mitochondrial matrix and is preferentially up-regulated during aging. Its overexpression results in an extension of life span (>30%) (Morrow, G., Samson, M., Michaud, S., and Tanguay, R. M. (2004) FASEB J. 18, 598-599 and Morrow, G., Battistini, S., Zhang, P., and Tanguay, R. M. (2004) J. Biol. Chem. 279, 43382-43385). Long lived flies expressing Hsp22 also have an increased resistance to oxidative stress and maintain locomotor activity longer. In the present study, the cross-species effects of Hsp22 expression were tested. DmHsp22 was found to be functionally active in human cells. It extended the life span of normal fibroblasts, slowing the aging process as evidenced by a lower level of the senescence associated beta-galactosidase. DmHsp22 expression in human cancer cells increased their malignant properties including anchorage-independent growth, tumor formation in nude mice, and resistance to a variety of anticancer drugs. We report that the DmHsp22 interacts and inactivates wild type tumor suppressor protein p53, which may be one possible way of its functioning in human cells. |
Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. | Oncogenic c-Myc is known to balance excessive proliferation by apoptosis that can be triggered by p53-dependent and p53-independent signaling networks. Here, we provide evidence that the BH3-only proapoptotic Bcl-2 family members Bcl-2 modifying factor (Bmf) and Bcl-2 antagonist of cell death (Bad) are potent antagonists of c-Myc-driven B-cell lymphomagenesis. Tumor formation was preceded by the accumulation of preneoplastic pre-B and immature immunoglobulin M-positive (IgM(+)) B cells in hematopoietic organs of Emu-myc/bmf(-/-) mice, whereas Emu-myc/bad(-/-) mice showed an increase of pre-B cells limited to the spleen. Although the loss of Bad had no impact on the tumor immunophenotype, Bmf deficiency favored the development of IgM(+) B cell over pre-B cell tumors. This phenomenon was caused by a strong protection of immature IgM(+) B cells from oncogene-driven apoptosis caused by loss of bmf and c-Myc-induced repression of Bmf expression in premalignant pre-B cells. Steady-state levels of B-cell apoptosis also were reduced in the absence of Bad, in support of its role as a sentinel for trophic factor-deprivation. Loss of Bmf reduced the pressure to inactivate p53, whereas Bad deficiency did not, identifying Bmf as a novel component of the p53-independent tumor suppressor pathway triggered by c-Myc. |
The dimeric structure and the bivalent recognition of H3K4me3 by the tumor suppressor ING4 suggests a mechanism for enhanced targeting of the HBO1 complex to chromatin. | The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at position K4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus in the five members of the ING family. ING4 facilitates histone H3 acetylation by the HBO1 complex. Here, we show that ING4 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING4, which contains the nuclear localization sequence, is disordered and flexible and does not directly interact with p53, or does it with very low affinity, in contrast to previous findings. The NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule. The detailed NMR analysis of the full-length dimeric protein binding to histone H3K4me3 shows essentially the same binding site and affinity as the isolated PHD finger. Therefore, the ING4 dimer has two identical and independent binding sites for H3K4me3 tails, which, in the context of the chromatin, could belong to the same or to different nucleosomes. These results show that ING4 is a bivalent reader of the chromatin H3K4me3 modification and suggest a mechanism for enhanced targeting of the HBO1 complex to specific chromatin sites. This mechanism could be common to other ING-containing remodeling complexes. |
p53 suppresses structural chromosome instability after mitotic arrest in human cells. | The p53 tumor suppressor inhibits the proliferation of cells that undergo prolonged activation of the mitotic checkpoint. However, the function of this antiproliferative response is not well defined. Here, we report that p53 suppresses structural chromosome instability after mitotic arrest in human cells. In both HCT116 colon cancer cells and normal human fibroblasts, DNA breaks occurred during mitotic arrest in a p53-independent manner, but p53 was required to suppress the proliferation and structural chromosome instability of the resulting polyploid cells. In contrast, cells made polyploid without mitotic arrest exhibited neither significant structural chromosome instability nor p53-dependent cell cycle arrest. We also observed that p53 suppressed both the frequency and structural chromosome instability of spontaneous polyploids in HCT116 cells. Furthermore, time-lapse videomicroscopy revealed that polyploidization of p53(-/-) HCT116 cells is frequently accompanied by mitotic arrest. These data suggest that a function of the p53-dependent postmitotic response is the prevention of structural chromosome instability after prolonged activation of the mitotic checkpoint. Accordingly, our study suggests a novel mechanism of tumor suppression for p53, as well as a potential function for p53 in the outcome of antimitotic chemotherapy. |
Tumor suppressive functions of p53. | The majority of human cancers acquire mutations that abrogate the p53 tumor suppressor network and, as a consequence, p53 is one of the most extensively studied proteins in cancer research. Because of its potent tumor suppressive activity, it is widely assumed that a molecular understanding of p53 action will produce fundamental insights into natural processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. p53 functions largely as a transcription factor, and can trigger a variety of antiproliferative programs by activating or repressing key effector genes. Despite a significant body of literature detailing the biochemical and biological functions of p53, much remains to be elucidated. Indeed, the p53 network is as complex and enigmatic as it is relevant. It is the goal of this article, written 30 years after the discovery of p53, to present a concise review of the tumor suppressor role of the p53 network and to highlight the context-dependent nature of p53 target-gene functions. |
Loss of heterozygosity of selected tumor suppressor genes in human testicular germ cell tumors. | Human testicular germ cell tumors (TGCTs) are histologically heterogenous neoplasms with a variable malignant potential. Two main groups of germ cell tumors occur in men: seminomas and nonseminomas. In the present study, a set of four tumor suppressor genes was investigated in testicular cancers. CDH1, APC, p53, and nm23-H1 genes were tested for loss of heterozygosity (LOH). Thirty-eight testicular germ cell tumors (17 seminomas and 21 nonseminomas) were analyzed by PCR using restriction fragment length polymorphism or the dinucleotide/tetranucleotide repeat polymorphism method. An allelic loss of p53 at exon 4 was detected in five nonseminomas, whereas LOH of p53 at intron 6 occurred in one of the seminoma and two of the nonseminoma samples. Allelic losses of the APC gene were present in three seminomas and one nonseminoma, whereas one seminoma and three nonseminomas showed LOH of CDH1. The analysis of allelic losses showed no common structural genetic alterations in tumor tissues, although a different pattern of LOH was observed between the two main histological groups of TGCTs. |
G9a and Glp methylate lysine 373 in the tumor suppressor p53. | The tumor suppressor p53 is regulated by numerous post-translational modifications. Lysine methylation has recently emerged as a key post-translational modification that alters the activity of p53. Here, we describe a novel lysine methylation site in p53 that is carried out by two homologous histone methyltransferases, G9a and Glp. G9a and Glp specifically methylate p53 at Lys(373), resulting mainly in dimethylation. During DNA damage, the overall level of p53 modified at Lys(373)me2 does not increase, despite the dramatic increase in total p53, indicating that Lys(373)me2 correlates with inactive p53. Further, reduction of G9a and/or Glp levels leads to a larger population of apoptotic cells. Examination of the Oncomine data base shows that G9a and Glp are overexpressed in various cancers compared with corresponding normal tissues, suggesting that they are putative oncogenes. These data reveal a new methylation site within p53 mediated by the methylases G9a and Glp and indicate that G9a is a potential inhibitory target for cancer treatment. |
Loss of the p53 tumor suppressor activity is associated with negative prognosis of mantle cell lymphoma. | Mantle cell lymphoma (MCL) is typified by translocation t(11;14)(q13;q32) causing upregulation of cyclin D1 and deregulation of cell cycle. The cyclin D1 activation plays a critical role in MCL pathogenesis but additional oncogenic events, such as aberrations of the ARF/MDM2/p53 pathway are also necessary for progression of the disease. We analyzed the p53 tumor suppressor in tumor tissue of 33 patients with MCL. The p53 status was determined by functional analyses in yeast (FASAY) and by cDNA sequencing. The level of the p53 protein was assessed by immunohistochemistry and immunoblotting. Loss of the p53-specific locus 17p13.3 was detected by FISH. mutations in the p53 gene were detected in nine samples and they included eight missense mutations and one short deletion causing frame shift and premature stop codon formation in position 169. This mutation was associated with mRNA decay as revealed by sequencing of the p53 gDNA. All eight missense mutations were manifested by accumulation of the p53 protein in nuclei of tumor cells and three of them exhibited loss of the p53-specific locus 17p13.3. The p53 mutations were shown to be a negative prognostic marker in MCL. |
p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5. | RBM5 (RNA-binding motif protein 5) is a nuclear RNA binding protein containing 2 RNA recognition motifs. The RBM5 gene is located at the tumor suppressor locus 3p21.3. Deletion of this locus is the most frequent genetic alteration in lung cancer, but is also found in other human cancers. RBM5 is known to induce apoptosis and cell cycle arrest but the molecular mechanisms of RBM5 function are poorly understood. Here, we show that RBM5 is important for the activity of the tumor suppressor protein p53. Overexpression of RBM5 enhanced p53-mediated inhibition of cell growth and colony formation. expression of RBM5 augmented p53 transcriptional activity in reporter gene assays and resulted in increased mRNA and protein levels for endogenous p53 target genes. In contrast, shRNA-mediated knockdown of endogenous RBM5 led to decreased p53 transcriptional activity and reduced levels of mRNA and protein for endogenous p53 target genes. RBM5 affected protein, but not mRNA, levels of endogenous p53 after DNA damage suggest that RBM5 contributes to p53 activity through post-transcriptional mechanisms. Our results show that RBM5 contributes to p53 transcriptional activity after DNA damage and that growth suppression and apoptosis mediated by RBM5 are linked to activity of the tumor suppressor protein p53. |
SSBP2 is an in vivo tumor suppressor and regulator of LDB1 stability. | SSBP proteins bind and stabilize transcriptional cofactor LIM domain-binding protein1 (LDB1) from proteosomal degradation to promote tissue-specific transcription through an evolutionarily conserved pathway. The human SSBP2 gene was isolated as a candidate tumor suppressor from a critical region of loss in chromosome 5q14.1. By gene targeting, we show increased predisposition to B-cell lymphomas and carcinomas in Ssbp2(-/-) mice. Remarkably, loss of Ssbp2 causes increased LDB1 turnover in the thymus, a pathway exploited in Trp53(-/-)Ssbp2(-/-) mice to develop highly aggressive, immature thymic lymphomas. Using T-cell differentiation as a model, we report a stage-specific upregulation of Ssbp2 expression, which in turn regulates LDB1 turnover under physiological conditions. Furthermore, transcript levels of pTalpha, a target of LDB1-containing complex, and a critical regulator T-cell differentiation are reduced in Ssbp2(-/-) immature thymocytes. Our findings suggest that disruption of the SSBP2-regulated pathways may be an infrequent but critical step in malignant transformation of multiple tissues. |
The non-structural (NS1) protein of influenza A virus associates with p53 and inhibits p53-mediated transcriptional activity and apoptosis. | NS1 protein of influenza A virus is involved in regulating the apoptosis of infected cells. We found that exogenously expressed NS1 was able to associate with the tumor suppressor p53 that plays an essential role in regulating apoptosis of influenza A virus-infected cells. Exogenous expression of NS1 resulted in inhibition of p53-mediated transcriptional activity and apoptosis. The p53 inhibitory domain of NS1 was located between amino acids 144 and 188. This domain is necessary for NS1 to inhibit p53 activity, but it requires additional region(s) to cooperatively exert this inhibitory function. |
MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. | BACKGROUND AND AIMS: Previous studies showed that microRNA-34 (miR-34a) family was found to be a direct target of p53, functioning downstream of the p53 pathway as tumor suppressors. MiR-34a was identified to represent the status of p53 and participate in initiation and progress of cancers. We undertook this study to investigate the role of miR-34a in glioma cells. METHODS: expression levels of miR-34a in glioma cell lines and normal brains were detected using qRT-PCR. Human U251 glioma cells were transfected with miR-34a mimics, and the effects of miR-34a restoration were assessed by MTT assays, cell cycle analysis, caspase-3 activation, and in vitro migration and invasion assays. A computational search revealed a conserved target site of miR-34a within the 3-untranslated region of SIRT1. Luciferase reporter assay was performed to examine the effects of miR-34a on expression of potential target gene SIRT1, and mRNA and protein expression of SIRT1 after miR-34a transfection were detected by qRT-PCR and Western blot analysis. RESULTS: MiR-34a expression was markedly reduced in p53-mutant cells U251 compared with A172 and SHG-44 cells expressing wild-type p53 and normal brains. Overexpression of miR-34a in U251 cells resulted in inhibition of cell growth and arrest in G0-G1 phase and induced apoptosis. Also, restoration of miR-34a significantly reduced in vitro migration and invasion capabilities. Reporter assays indicated that SIRT1 was a direct target of miR-34a. In U251 cells, overexpression of miR-34a decreased SIRT1 protein levels but not mRNA expressions, which demonstrated miR-34a-induced SIRT1 inhibition occurred at the posttranscriptional level. CONCLUSIONS: Our results demonstrate that miR-34a acts as a tumor suppressor in p53-mutant glioma cells U251, partially through regulating SIRT1. |
EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. | Ephrins and Eph receptor(s) have recently been implicated in regulating neurogenesis in the adult subventricular zone (SVZ) and rostral migratory stream. Here, we examined the role of ephrinB3-EphB3 signaling in mediating the SVZ response to traumatic brain injury (TBI). Analysis of EphB3 expression showed colocalization with glial fibrillary acidic protein-positive neural stem progenitor cells (NSPCs) and doublecortin-positive neuroblasts, whereas ephrinB3 was expressed outside the neurogenic region. TBI resulted in a significant reduction in EphB3 expression, which coincided with enhanced NSPC survival and proliferation at 3 and 7 days postinjury. Analysis of mice lacking either ephrinB3 (ephrinB3(-/-)) or EphB3 (EphB3(-/-)) showed a significant increase in bromodeoxyuridine (BrdU) incorporation and Ki67 immunoreactivity in the SVZ. Interestingly, cell death was dissimilar between knockout mice, where cell death was reduced in EphB3(-/-) but increased in ephrinB3(-/-) mice. Lateral ventricle infusion of soluble preclustered ephrinB3-Fc reversed the proliferative and cell death defects in ephrinB3(-/-) but not EphB3(-/-) mice and prevented TBI-induced proliferation in wild-type NSPCs. Coincidently, tumor suppressor p53 expression was increased following EphB3 stimulation and is reduced in the absence of either EphB3 or ephrinB3. Furthermore, pharmacological inhibition and siRNA knockdown of p53-attenuated ephrinB3-Fc-mediated growth suppression while having no effect on cell death in cultured NSPCs. These data demonstrate that EphB3 signaling suppresses NSPC proliferation in a p53-dependent manner, induces cell death in the absence of ligand stimulation and is transiently reduced in the SVZ to initiate the expansion and survival of endogenous adult NSPCs following TBI. |
The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. | The S100B-p53 protein complex was discovered in C8146A malignant melanoma, but the consequences of this interaction required further study. When S100B expression was inhibited in C8146As by siRNA (siRNA(S100B)), wt p53 mRNA levels were unchanged, but p53 protein, phosphorylated p53, and p53 gene products (i.e. p21 and PIDD) were increased. siRNA(S100B) transfections also restored p53-dependent apoptosis in C8146As as judged by poly(ADP-ribose) polymerase cleavage, DNA ladder formation, caspase 3 and 8 activation, and aggregation of the Fas death receptor (+UV); whereas, siRNA(S100B) had no effect in SK-MEL-28 cells containing elevated S100B and inactive p53 (p53R145L mutant). siRNA(S100B)-mediated apoptosis was independent of the mitochondria, because no changes were observed in mitochondrial membrane potential, cytochrome c release, caspase 9 activation, or ratios of pro- and anti-apoptotic proteins (BAX, Bcl-2, and Bcl-X(L)). As expected, cells lacking S100B (LOX-IM VI) were not affected by siRNA(S100B), and introduction of S100B reduced their UV-induced apoptosis activity by 7-fold, further demonstrating that S100B inhibits apoptosis activities in p53-containing cells. In other wild-type p53 cells (i.e. C8146A, UACC-2571, and UACC-62), S100B was found to contribute to cell survival after UV treatment, and for C8146As, the decrease in survival after siRNA(S100B) transfection (+UV) could be reversed by the p53 inhibitor, pifithrin-alpha. In summary, reducing S100B expression with siRNA was sufficient to activate p53, its transcriptional activation activities, and p53-dependent apoptosis pathway(s) in melanoma involving the Fas death receptor and perhaps PIDD. Thus, a well known marker for malignant melanoma, S100B, likely contributes to cancer progression by down-regulating the tumor suppressor protein, p53. |
p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. | The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity. |
BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice. | During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis. |
Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. | Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by intense apoptosis resistance and extensive necrosis. Bcl2L12 (for Bcl2-like 12) is a cytoplasmic and nuclear protein that is overexpressed in primary GBM and functions to inhibit post-mitochondrial apoptosis signaling. Here, we show that nuclear Bcl2L12 physically and functionally interacts with the p53 tumor suppressor, as evidenced by the capacity of Bcl2L12 to (1) enable bypass of replicative senescence without concomitant loss of p53 or p19 (Arf), (2) inhibit p53-dependent DNA damage-induced apoptosis, (3) impede the capacity of p53 to bind some of its target gene promoters, and (4) attenuate endogenous p53-directed transcriptomic changes following genotoxic stress. Correspondingly, The cancer Genome Atlas profile and tissue protein analyses of human GBM specimens show significantly lower Bcl2L12 expression in the setting of genetic p53 pathway inactivation. Thus, Bcl2L12 is a multifunctional protein that contributes to intense therapeutic resistance of GBM through its ability to operate on two key nodes of cytoplasmic and nuclear signaling cascades. |
Counteracting MDM2-induced HIPK2 downregulation restores HIPK2/p53 apoptotic signaling in cancer cells. | Homeodomain-interacting protein kinase-2 (HIPK2) is a crucial regulator of p53 apoptotic function by phosphorylating serine 46 (Ser46) in response to DNA damage. In tumors with wild-type p53, its tumor suppressor function is often impaired by MDM2 overexpression that targets p53 for proteasomal degradation. Likewise, MDM2 targets HIPK2 for protein degradation impairing p53-apoptotic function. Here we report that zinc antagonised MDM2-induced HIPK2 degradation as well as p53 ubiquitination. The zinc inhibitory effect on MDM2 activity leads to HIPK2-induced p53Ser46 phosphorylation and p53 pro-apoptotic transcriptional activity. These results suggest that zinc derivatives are potential molecules to target the MDM2-induced HIPK2/p53 inhibition. |
MAP/ERK kinase kinase 1 (MEKK1) mediates transcriptional repression by interacting with polycystic kidney disease-1 (PKD1) promoter-bound p53 tumor suppressor protein. | Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFalpha, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation. |
p53 post-translational modification: deregulated in tumorigenesis. | The p53 tumor suppressor protein has well-established roles in monitoring various types of stress signals by activating specific transcriptional targets that control cell cycle arrest and apoptosis, although some activities are also mediated in a transcription-independent manner. Here, we review the recent advances in our understanding of the wide spectrum of post-translational modifications that act as epigenetic-like codes for modulating specific functions of p53 in vivo and how deregulation of these modifications might contribute to tumorigenesis. We also discuss future research priorities to further understand p53 post-translational modifications and the interpretation of genetic data in appreciation of the increasing evidence that p53 regulates cellular metabolism, autophagy and many unconventional tumor suppressor activities. |
Sun-induced nonsynonymous p53 mutations are extensively accumulated and tolerated in normal appearing human skin. | Here we demonstrate that intermittently sun-exposed human skin contains an extensive number of phenotypically intact cell compartments bearing missense and nonsense mutations in the p53 tumor suppressor gene. Deep sequencing of sun-exposed and shielded microdissected skin from mid-life individuals revealed that persistent p53 mutations had accumulated in 14% of all epidermal cells, with no apparent signs of a growth advantage of the affected cell compartments. Furthermore, 6% of the mutated epidermal cells encoded a truncated protein. The abundance of these events, not taking into account intron mutations and mutations in other genes that also may have functional implications, suggests an extensive tolerance of human cells to severe genetic alterations caused by UV light, with an estimated annual rate of accumulation of approximately 35,000 new persistent protein-altering p53 mutations in sun-exposed skin of a human individual. |
Transcriptome analysis reveals that p53 and {beta}-catenin alterations occur in a group of aggressive adrenocortical cancers. | Adrenocortical carcinoma (ACC) is a rare disease with an overall poor but heterogeneous prognosis. This heterogeneity could reflect different mechanisms of tumor development. gene expression profiling by transcriptome analysis led to ACC being divided into two groups of tumors with very different outcomes. Somatic inactivating mutations of the tumor suppressor gene TP53 and activating mutations of the proto-oncogene beta-catenin (CTNNB1) are the most frequent mutations identified in ACC. This study investigates the correlation between p53 and beta-catenin alterations and the molecular classification of ACC by transcriptome analysis of 51 adult sporadic ACCs. All TP53 and CTNNB1 mutations seemed to be mutually exclusive and were observed only in the poor-outcome ACC group. Most of the abnormal p53 and beta-catenin immunostaining was also found in this group. Fifty-two percent of the poor-outcome ACC group had TP53 or CTNNB1 mutations and 60% had abnormal p53 or beta-catenin immunostaining. Unsupervised clustering transcriptome analysis of this poor-outcome group revealed three different subgroups, two of them being associated with p53 or beta-catenin alterations, respectively. Analysis of p53 and beta-catenin target gene expressions in each cluster confirmed a profound and anticipated effect on tumor biology, with distinct profiles logically associated with the respective pathway alterations. The third group had no p53 or beta-catenin alteration, suggesting other unidentified molecular defects. This study shows the important respective roles of p53 and beta-catenin in ACC development, delineating subgroups of ACC with different tumorigenesis and outcomes. |
Phosphorylation of Ser312 contributes to tumor suppression by p53 in vivo. | The tumor suppressor p53 is a master sensor of stress, and posttranslational modifications are key in controlling its stability and transcriptional activities. p53 can be phosphorylated on at least 23 Ser/Thr residues, the majority of which are phosphorylated by stress-related kinases. An exception is Ser315 in human p53 (Ser312 in mouse), which is predominantly phosphorylated by cell cycle-related kinases. To understand the biological importance of Ser312 phosphorylation in vivo, we generated p53Ser312Ala knock-in mice. We show here that, although Ser312 is not essential for mouse life span under normal physiological conditions, Ser312Ala mutation dampens p53s activity during embryonic development. This is evident from its partial rescue of embryonic lethality caused by Mdm4 deletion. In agreement with the notion that Ser312 mutation weakens p53 function, Ser312Ala mice are also more susceptible to tumorigenesis following a sublethal ionizing radiation dose. Importantly, in the cohort studied, Ser312 mutation predisposes mice to develop thymic lymphomas and liver tumors, partly due to p53Ser312Alas inability to fully induce a set of p53 target genes including p21 and cyclin G1. Thus, we demonstrate that phosphorylation of Ser312 is required for p53 to function fully as a tumor suppressor in vivo. |
Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. | The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely (DeltaT(m) = 4.8 approximately -46.8 degrees C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important. |
Alterations in the tumor suppressor gene p16(INK4A) are associated with aggressive behavior of penile carcinomas. | Alterations in the p16/cyclinD1/Rb and ARF/Mdm2/p53 pathways are frequent events in the pathogenesis of squamous cell carcinomas. Different mechanisms of p16 regulation have been described for penile carcinomas so far. Therefore, expression of p16 and p53 was immunohistochemically detected with monoclonal antibodies in 52 primary invasive penile squamous cell carcinomas. The carcinomas were analyzed for allelic loss (LOH) in p16(INK4A) and p53, as well as for mutations in the p16(INK4A) and the p53 gene. In addition, we examined the promoter status of p16(INK4A) by methylation-specific PCR. The presence of human papilloma virus (HPV) 6/11, HPV 16 and HPV 18 DNA was analyzed by PCR. Data were compared to clinical data. Concerning p16, 26 (50%) tumors showed positive immunohistochemistry, 32 (62%) tumors showed allelic loss and 22 tumors (42%) showed promoter hypermethylation. All tumors with negative p16 immunohistochemistry showed LOH near the p16(INK4A) locus and/or hypermethylation of the p16(INK4A) promoter. HPV 16 DNA was detected in 17 tumors, ten of them with positive p16 immunostaining. The remaining seven tumors with negative p16 staining showed allelic loss and/or promoter hypermethylation. Evidence of lymph node metastasis was significantly associated with negative p16 immunohistochemistry as well as with combined LOH and promoter hypermethylation (p = 0.003 and p = 0.018, respectively). Allelic loss around p53 was found in 22 tumors (42%), and seven mutations of the p53 gene could be demonstrated in our tumors. No correlations could be found between any p53 alteration and clinical parameters. |
Mdm2 links genotoxic stress and metabolism to p53. | Mouse double minute 2 (Mdm2) gene was isolated from a cDNA library derived from transformed mouse 3T3 cells, and was classified as an oncogene as it confers 3T3 and Rat2 cells tumorigenicity when overexpressed. It encodes a nucleocytoplasmic shuttling ubiquitin E3 ligase, with its main target being tumor suppressor p53, which is mutated in more than 50% of human primary tumors. Mdm2s oncogenic activity is mainly mediated by p53, which is activated by various stresses, especially genotoxic stress, via Atm (ataxia telangiectasia mutated) and Atr (Atm and Rad3-related). Activated p53 inhibits cell proliferation, induces apoptosis or senescence, and maintains genome integrity. Mdm2 is also a target gene of p53 transcription factor. Thus, Mdm2 and p53 form a feedback regulatory loop. External and internal cues, through multiple signaling pathways, can act on Mdm2 to regulate p53 levels and cell proliferation, death, and senescence. This review will focus on how Mdm2 is regulated under genotoxic stress, and by the Akt1-mTOR-S6K1 pathway that is activated by insulin, growth factors, amino acids, or energy status. |
Context dependence of checkpoint kinase 1 as a therapeutic target for pancreatic cancers deficient in the BRCA2 tumor suppressor. | Inherited mutations in the tumor suppressor BRCA2 are predisposed to pancreatic adenocarcinomas, which carry activating mutations in the KRAS oncogene in more than 95% of cases, as well as frequent TP53 inactivation. Here, we have established an RNA interference (RNAi) screen to identify genes whose depletion selectively inhibits the growth of cells lacking BRCA2, and then studied the effects of the genetic depletion or pharmacologic inhibition of 1 candidate, the checkpoint kinase 1 (CHK1), in the context of pancreatic cancer. Pharmacologic inhibition of CHK1 using small-molecule inhibitors (CHK1i) reduced cell growth in several cell lines depleted of BRCA2. Unexpectedly, these drugs did not suppress the growth of BRCA2-deficient pancreatic cancer cell lines from humans or gene-targeted mice expressing active Kras and trans-dominant inhibitory mutant Trp53. Remarkably, the expression of KRAS(G12V) and TP53(G154V) in BRCA2-depleted HEK293 cells was sufficient to render them resistant to CHK1i (but not to mitomycin C or inhibitors of PARP1). CHK1i sensitivity was restored by gemcitabine, an S-phase genotoxin used to treat pancreatic adenocarcinoma. Thus, the growth-suppressive effect of CHK1 inhibition in BRCA2-mutant tumors can be opposed by concurrent KRAS activation and TP53 mutations typical of pancreatic adenocarcinoma, and CHK1i resistance in this setting can be overcome by gemcitabine. Our findings show that approaches that use potential therapeutic targets for cancer identified in synthetic lethal RNAi screens are affected by the genetic context of specific malignancies and combination therapy with other agents. This concept should be taken into account in the ongoing and future development of targeted cancer therapies. |
Increased levels of p53 and PARP-1 in EL-4 cells probably related with the immune adaptive response induced by low dose ionizing radiation in vitro. | OBJECTIVE: This paper is to explore the DNA repair mechanism of immune adaptive response (AR) induced by low dose radiation (LDR), the changes of mRNA levels and protein expressions of p53, ATM, DNA-PK catalytic subunit (DNA-PKcs) and PARP-1 genes in the LDR-induced AR in EL-4 cells. METHODS: The apoptosis and cell cycle progression of EL-4 cells were detected by flow cytometry in 12 h after the cells received the pre-exposure of 0.075 Gy X-rays (inductive dose, D1) and the succeeding high dose irradiation (challenge dose, D2; 1.0, 1.5, and 2.0 Gy X-rays, respectively) with or without wortmannin (inhibitor of ATM and DNA-PK) and 3-aminobenzamid (inhibitor of PARP-1). And the protein expressions and mRNA levels related to these genes were detected with flow cytometry and reverse transcription-polymerase chain reaction in 12 h after irradiation with D2. RESULTS: The mRNA and protein expressions of p53 and PARP-1 in EL-4 cells in the D1 + D2 groups were much lower than those in the D2 groups, and those of PARP-1 in the 3-AB + D2 and the 3-AB + D1 + D2 groups were much lower than those in the D2 and the D1 + D2 groups. The percentage of apoptotic EL-4 cells in the 3-AB + D1 + D2 groups was much higher than that in the D1 + D2 groups, that in the G(0)/G(1) and the G(2) + M phases was much higher, and that in the S phase were much lower. Although the ATM and DNA-PKcs mRNA and protein expressions in wortmannin + D1 + D2 groups were much lower than those in the D1 + D2 groups, there were no significant changes in the apoptosis and cell cycle progression between the wortmannin + D1 + D2 and the D1 + D2 groups. CONCLUSION: PARP-1 and p53 might play important roles in AR induced by LDR. |
The telomerase inhibitor PinX1 is a major haploinsufficient tumor suppressor essential for chromosome stability in mice. | Telomerase is activated in most human cancers and is critical for cancer cell growth. However, little is known about the significance of telomerase activation in chromosome instability and cancer initiation. The gene encoding the potent endogenous telomerase inhibitor PinX1 (PIN2/TRF1-interacting, telomerase inhibitor 1) is located at human chromosome 8p23, a region frequently exhibiting heterozygosity in many common human cancers, but the function or functions of PinX1 in development and tumorigenesis are unknown. Here we have shown that PinX1 is a haploinsufficient tumor suppressor essential for chromosome stability in mice. We found that PinX1 expression was reduced in most human breast cancer tissues and cell lines. Furthermore, PinX1 heterozygosity and PinX1 knockdown in mouse embryonic fibroblasts activated telomerase and led to concomitant telomerase-dependent chromosomal instability. Moreover, while PinX1-null mice were embryonic lethal, most PinX1+/- mice spontaneously developed malignant tumors with evidence of chromosome instability. Notably, most PinX1 mutant tumors were carcinomas and shared tissues of origin with human cancer types linked to 8p23. PinX1 knockout also shifted the tumor spectrum of p53 mutant mice from lymphoma toward epithelial carcinomas. Thus, PinX1 is a major haploinsufficient tumor suppressor essential for maintaining telomerase activity and chromosome stability. These findings uncover what we believe to be a novel role for PinX1 and telomerase in chromosome instability and cancer initiation and suggest that telomerase inhibition may be potentially used to treat cancers that overexpress telomerase. |
Loss of heterozygosity of tumor suppressor genes (p16, Rb, E-cadherin, p53) in hypopharynx squamous cell carcinoma. | OBJECTIVE: Microsatellite alterations, especially those that cause loss of heterozygosity (LOH), have recently been postulated as a novel mechanism of carcinogenesis and a useful prognostic factor in many kinds of malignant tumors. However, few studies have focused on a specific site, hypopharynx. The aim of this study was to evaluate the relationship between LOH and hypopharyngeal squamous cell carcinoma (HPSCC). STUDY DESIGN: Laboratory-based study. SETTING: Integrated health care system. SUBJECTS AND METHODS: Matched normal and cancerous tissues from 30 patients with HPSCC were examined for LOH in 4 tumor suppressor genes (TSGs) (p16, Rb, E-cadherin, and p53) at loci 9p21, 13q21, 6q22, and 17p13, respectively, using microsatellite markers amplified by polymerase chain reaction. The results for each loci were compared with clinicopathological features. RESULTS: Among the 30 cases, 26 (86.7%) exhibited LOH, with the most common alteration being LOH at p53 (52.6%). Significantly higher rates of LOH detection were seen in Rb, p53, and the LOH-high group (cases where 2 or more loci with LOH were found) in cases of lymph node metastasis. Compared with stage I and II carcinoma, tumors of stages III and IV had significantly higher frequencies of LOH in Rb, p53, and the LOH-high group. However, the presence of LOH was not significantly correlated with survival. CONCLUSION: These results suggest that LOH in TSGs such as Rb and p53 may contribute to the development and progression of HPSCC. The presence of LOH in the primary tumor may also be predictive of lymph node metastasis. |
Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. | Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for gamma-irradiation (gammaIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against gammaIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, gammaIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy. |
The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens. | We previously found that lenses lacking the Acvr1 gene, which encodes a bone morphogenetic protein (BMP) receptor, had abnormal proliferation and cell death in epithelial and cortical fiber cells. We tested whether the tumor suppressor protein p53 (encoded by Trp53) affected this phenotype. Acvr1 conditional knockout (Acvr1(CKO)) mouse fiber cells had increased numbers of nuclei that stained for p53 phosphorylated on serine 15, an indicator of p53 stabilization and activation. Deletion of Trp53 rescued the Acvr1(CKO) cell death phenotype in embryos and reduced Acvr1-dependent apoptosis in postnatal lenses. However, deletion of Trp53 alone increased the number of fiber cells that failed to withdraw from the cell cycle. Trp53(CKO) and Acvr1;Trp53(DCKO) (double conditional knockout), but not Acvr1(CKO), lenses developed abnormal collections of cells at the posterior of the lens that resembled posterior subcapsular cataracts. Cells from human posterior subcapsular cataracts had morphological and molecular characteristics similar to the cells at the posterior of mouse lenses lacking Trp53. In Trp53(CKO) lenses, cells in the posterior plaques did not proliferate but, in Acvr1;Trp53(DCKO) lenses, many cells in the posterior plaques continued to proliferate, eventually forming vascularized tumor-like masses at the posterior of the lens. We conclude that p53 protects the lens against posterior subcapsular cataract formation by suppressing the proliferation of fiber cells and promoting the death of any fiber cells that enter the cell cycle. Acvr1 acts as a tumor suppressor in the lens. Enhancing p53 function in the lens could contribute to the prevention of steroid- and radiation-induced posterior subcapsular cataracts. |
Relative role of methylator and tumor suppressor pathways in ulcerative colitis-associated colon cancer. | BACKGROUND: Chronic ulcerative colitis (UC) is associated with an increased colorectal cancer risk which may be secondary to repetitive mucosal injury. Both epigenetic methylation and the classic adenoma-to-carcinoma sequence have been implicated in this malignant transformation, but the underlying molecular mechanisms remain poorly defined. This study compares the molecular characteristics of colitis-associated and common colorectal cancers. METHODS: Nineteen patients with colorectal adenocarcinomas arising within UC were matched for age and cancer site with 54 patients with sporadic adenocarcinomas. Tumor tissue was examined for BRAF mutations, CpG island methylator phenotype (CIMP), and MLH1 promoter methylation. mutations of KRAS and p53 were assessed by sequencing. RESULTS: Patient demographics were similar for the two groups. CIMP was observed in 22% of sporadic colorectal cancers and in 5% of UC cancers (P = 0.162). Rates of BRAF mutation (4% vs 5%, P = 1.0), MLH1 methylation (9% versus 5%, P = 0.682), and KRAS mutations (24% versus 32%, P = 0.552) were similar between the groups. However, colitis-associated colorectal cancers were more likely to have a p53 mutation compared to sporadic adenocarcinomas (95% versus 53%, P = 0.001). The dominant mutation for colitis-associated cancers was a mutation in codon 4, representing half of the mutations. Furthermore, colitis-associated cancers had a higher rate of mutation in codon 8 (48% versus 6%, P < 0.001) than sporadic counterparts. CONCLUSIONS: Unlike other inflammatory gastrointestinal cancers, colitis-associated colorectal cancers do not preferentially arise via a methylator pathway when compared to sporadic colorectal cancers. Chromosomal instability remains an important etiology, but with a unique p53 frequency and mutation pattern. |
Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells. | The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16(Ink4a) and p19(Arf)) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19(Arf) is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf) in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate gamma-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells. |
Tumor suppressor protein (p)53, is a regulator of NF-kappaB repression by the glucocorticoid receptor. | Glucocorticoids can inhibit inflammation by abrogating the activity of NF-kappaB, a family of transcription factors that regulates the production of proinflammatory cytokines. To understand the molecular mechanism of repression of NF-kappaB activity by glucocorticoids, we performed a high-throughput siRNA oligo screen to identify novel genes involved in this process. Here, we report that loss of p53, a tumor suppressor protein, impaired repression of NF-kappaB target gene transcription by glucocorticoids. Additionally, loss of p53 also impaired transcription of glucocorticoid receptor (GR) target genes, whereas upstream NF-kappaB and glucocorticoid receptor signaling cascades remained intact. We further demonstrate that p53 loss severely impaired glucocorticoid rescue of death in a mouse model of LPS shock. Our findings unveil a new role for p53 in the repression of NF-kappaB by glucocorticoids and suggest important implications for treatment of the proinflammatory microenvironments found in tumors with aberrant p53 activity. |
NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. | In biological networks, a small number of "hub" proteins play critical roles in the network integrity and functions. The cell cycle network orchestrates versatile cellular functions through interactions between many signaling modules, whose defects impair diverse cellular processes, often leading to cancer. However, the network architecture and molecular basis that ensure proper coordination between distinct modules are unclear. Here, we show that the ubiquitin ligase NIRF (also known as UHRF2), which induces G1 arrest, interacts with multiple cell cycle proteins including cyclins (A2, B1, D1 and E1), p53 and pRB, and ubiquitinates cyclins D1 and E1. Consistent with its versatility, a bioinformatic network analysis demonstrated that NIRF is an intermodular hub protein that is responsible for the coordination of multiple network modules. Notably, intermodular hubs are frequently associated with oncogenesis. Indeed, we detected loss of heterozygosity of the NIRF gene in several kinds of tumors. When a cancer outlier profile analysis was applied to the Oncomine database, loss of the NIRF gene was found at statistically significant levels in diverse tumors. Importantly, a recurrent microdeletion targeting NIRF was observed in non-small cell lung carcinoma. Furthermore, NIRF is immediately adjacent to the single nucleotide polymorphism rs719725, which is reportedly associated with the risk of colorectal cancer. These observations suggest that NIRF occupies a prominent position within the cell cycle network, and is a strong candidate for a tumor suppressor whose aberration contributes to the pathogenesis of diverse malignancies. |
Tumor suppressor gene expression during normal and pathologic myocardial growth. | Previous studies have identified several host proteins (p53, p107, and p193), which form prominent complexes with SV40 T antigen in transformed cardiomyocytes. expression of p53 and p107 was monitored during normal and pathologic growth in nontransformed murine myocardium. Both genes were expressed at relatively high levels in embryonic cardiomyocytes. Transcript levels decreased markedly during the process of cardiomyocyte terminal differentiation and were very low or undetectable in adult animals. In contrast, retinoblastoma transcripts were observed at low levels throughout myocardial development. None of the tumor suppressor genes examined were transcriptionally activated during acute myocardial overload or isoproterenol-induced myocardial hypertrophy. The potential role of tumor suppressor gene product expression in myocardial development and pathology is discussed. |
The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. | mutations of the BRCA1 gone in humans are associated with predisposition to breast and ovarian cancers. We show here that Brca1+/- mice are normal and fertile and lack tumors by age eleven months. Homozygous Brca1(5-6) mutant mice die before day 7.5 of embryogenesis. Mutant embryos are poorly developed, with no evidence of mesoderm formation. The extraembryonic region is abnormal, but aggregation with wild-type tetraploid embryos does not rescue the lethality. In vivo, mutant embryos do not exhibit increased apoptosis but show reduced cell proliferation accompanied by decreased expression of cyclin E and mdm-2, a regulator of p53 activity. The expression of cyclin-dependent kinase inhibitor p21 is dramatically increased in the mutant embryos. Buttressing these in vivo observations is the fact that mutant blastocyst growth is grossly impaired in vitro. Thus, the death of Brca1(5-6) mutant embryos prior to gastrulation may be due to a failure of the proliferative burst required for the development of the different germ layers. |
Tumor suppressor gene mutations in mice. | Over the past several years, a number of human tumor suppressor genes have been cloned and characterized. Germline mutations in tumor suppressor genes strongly predispose to cancer, and they are also mutated somatically in sporadic forms of the disease. In order to create animal models for the familial cancer syndromes caused by inherited mutations in these genes as well as to determine their role in embryogenesis, the homologues of several members of this class have been mutated in the mouse. The initial characterization of the heterozygous and homozygous phenotypes caused by these mutations has led to important insights into the mechanisms by which tumor suppressor genes participate in normal development and how their loss contributes to tumorigenesis. |
Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. | A role for the membrane/cytoskeleton interface in the development and progression of cancer is established, yet poorly understood. The neurofibromatosis type II (NF2) tumor suppressor gene encodes a member of the ezrin/radixin/moesin (ERM) family of membrane/cytoskeleton linker proteins thought to be important for cell adhesion and motility. We report that in contrast to the narrow spectrum of benign tumors in human NF2 patients, Nf2 heterozygous mice develop a variety of malignant tumors. Using the fact that Nf2 is linked to the p53 tumor suppressor locus in the mouse we have also investigated the effects of genetic linkage of cancer-predisposing mutations on tumorigenesis and examined the genetic pathway to tumor formation involving Nf2 loss. Importantly, we observed a very high rate of metastasis associated with Nf2 deficiency, with or without loss of p53 function, and we provide experimental evidence supporting a role for Nf2 loss in metastatic potential. Together, our results suggest an important role for the NF2 tumor suppressor, and perhaps the ERM family in tumor formation and metastasis. |
Allelic loss analysis of gamma-ray-induced mouse thymic lymphomas: two candidate tumor suppressor gene loci on chromosomes 12 and 16. | A total of 429 gamma-ray-induced thymic lymphomas were obtained from F1 and backcross mice between BALB/c and MSM strains, about a half of which carried a p53-deficient allele. A genome-wide allelic loss analysis has revealed two loci exhibiting frequent allelic losses but no allelic preference, one is localized within a 2.9 cM region between D12Mit53 and D12Mit279 loci on chromosome 12, and the other is near the D16Mit122/D16Mit162 loci on chromosome 16. The frequency of allelic loss in the D12Mit279 region is 62% and does not differ in tumors between the presence and absence of the p53-deficient allele. In contrast, the loss frequency of D16Mit122 is raised by the existence of p53-deficient allele: 62% for p63(-/+) and 13% for p53(+/+), suggesting co-operative function of the two losses. The D12Mit279 and D16Mit122 regions probably harbor different types of tumor suppressor gene that play key roles in lymphoma development. |