General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 7703 |
Name | PCGF2 |
Synonymous | MEL-18|RNF110|ZNF144;polycomb group ring finger 2;PCGF2;polycomb group ring finger 2 |
Definition | DNA-binding protein Mel-18|polycomb group RING finger protein 2|ring finger protein 110|zinc finger protein 144 |
Position | 17q12 |
Gene type | protein-coding |
Title |
Abstract |
Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. | The Bmi-1 oncogene is overexpressed in a number of malignancies including breast cancer. In addition to Bmi-1, mammalian cells also express four other polycomb group (PcG) proteins that are closely related to Bmi-1. Virtually nothing is known about the role of these PcG proteins in oncogenesis. We have recently reported that Mel-18, a Bmi-1-related PcG protein, negatively regulates Bmi-1 expression, and that its expression negatively correlates with Bmi-1 in proliferating and senescing human fibroblasts. Here, we report that the expression of Bmi-1 and Mel-18 inversely correlates in a number of breast cancer cell lines and in a significant number of breast tumor samples. Overexpression of Mel-18 results in repression of Bmi-1 and reduction of the transformed phenotype in malignant breast cancer cells. Furthermore, the repression of Bmi-1 by Mel-18 is accompanied by the reduction of Akt/protein kinase B (PKB) activity in breast cancer cells. Similarly, Bmi-1 knockdown using RNA interference approach results in down-regulation of Akt/PKB activity and reduction in transformed phenotype of MCF7 cells. Importantly, we show that overexpression of constitutively active Akt overrides tumor-suppressive effect of Mel-18 overexpression and the knockdown of Bmi-1 expression. Thus, our studies suggest that Mel-18 and Bmi-1 may regulate the Akt pathway in breast cancer cells, and that Mel-18 functions as a tumor suppressor by repressing the expression of Bmi-1 and consequently down-regulating Akt activity. |
The novel tumor-suppressor Mel-18 in prostate cancer: its functional polymorphism, expression and clinical significance. | Mel-18 is a member of the polycomb group (PcG) proteins, which are chromatin regulatory factors and play important roles in development and oncogenesis. This study was designed to investigate the clinical and prognostic significance of Mel-18 in patients with prostate cancer. A total of 539 native Japanese subjects consisting of 393 prostate cancer patients and 146 controls were enrolled in this study. Mel-18 genotyping was analyzed using a PCR-RFLP method and an automated sequencer using the geneSCAN software. Immunohistochemistry revealed that Mel-18 expression was diminished in high grade and high stage prostate cancers. Moreover, patients with positive Mel-18 expression had significantly longer PSA recurrence-free survival than patients negative for Mel-18 expression (p=0.038). A Mel-18 1805A/G SNP was located in the 3 untranslated region and was predicted to alter the secondary structure of the mRNA. Mel-18 mRNA expression of the 1805A allele was clearly higher than expression of the 1805G allele by allele specific quantitative RT-PCR. In multivariate analysis, a homozygous G allele genotype and negative Mel-18 expression were independent risk factors predicting high PSA recurrence after radical prostatectomy, with HRs of 2.757 (p=0.022) and 2.271 (p=0.045), respectively. Moreover, the G allele was also an independent predictor of poor cancer-specific survival with an HR of 4.658 (p=0.019) for patients with stage D2 prostate cancer. This is the first study to provide important evidence demonstrating that Mel-18 is a tumor suppressor and possible therapeutic target, as well as a diagnostic marker for poor prognosis in prostate cancer patients. |
BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. | BACKGROUND: The BMI1 oncogene is overexpressed in several human malignancies including gastric cancer. In addition to BMI1, mammalian cells also express Mel-18, which is closely related to BMI1. We have reported that Mel-18 functions as a potential tumor suppressor by repressing the expression of BMI1 and consequent downregulation of activated AKT in breast cancer cells. However, the mechanisms of BMI1 overexpression and the role of Mel-18 in other cancers are still not clear. The purpose of this study is to investigate the role of BMI1 and Mel-18 in gastric cancer. RESULTS: BMI1 was found to be overexpressed in gastric cancer cell lines and gastric tumors. Overexpression of BMI1 correlated with advanced clinical stage and lymph node metastasis; while the expression of Mel-18 negatively correlated with BMI1. BMI1 but not Mel-18 was found to be an independent prognostic factor. Downregulation of BMI1 by Mel-18 overexpression or knockdown of BMI1 expression in gastric cancer cell lines led to upregulation of p16 (p16INK4a or CDKN2A) in p16 positive cell lines and reduction of phospho-AKT in both p16-positive and p16-negative cell lines. Downregulation of BMI1 was also accompanied by decreased transformed phenotype and migration in both p16- positive and p16-negative gastric cancer cell lines. CONCLUSIONS: In the context of gastric cancer, BMI1 acts as an oncogene and Mel-18 functions as a tumor suppressor via downregulation of BMI1. Mel-18 and BMI1 may regulate tumorigenesis, cell migration and cancer metastasis via both p16- and AKT-dependent growth regulatory pathways. |