Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

79648

Name

MCPH1

Synonymous

BRIT1|MCT;microcephalin 1;MCPH1;microcephalin 1

Definition

BRCT-repeat inhibitor of TERT expression 1|microcephalin

Position

8p23.1

Gene type

protein-coding

Title

Abstract

BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer.

BRIT1, initially identified as an hTERT repressor, has additional functions at DNA damage checkpoints. Here, we demonstrate that BRIT1 formed nuclear foci minutes after irradiation. The foci of BRIT1 colocalized with 53BP1, MDC1, NBS1, ATM, RPA, and ATR. BRIT1 was required for activation of these elements, indicating that BRIT1 is a proximal factor in the DNA damage response pathway. Depletion of BRIT1 increased the accumulation of chromosomal aberrations. In addition, decreased levels of BRIT1 were detected in several types of human cancer, with BRIT1 expression being inversely correlated with genomic instability and metastasis. These results identify BRIT1 as a crucial DNA damage regulator in the ATM/ATR pathways and suggest that it functions as a tumor suppressor gene.

Differential regulation of centrosome integrity by DNA damage response proteins.

MDC1 and BRIT1 have been shown to function as key regulators in response to DNA damage. However, their roles in centrosomal regulation havent been elucidated. In this study, we demonstrated the novel functions of these two molecules in regulating centrosome duplication and mitosis. We found that MDC1 and BRIT1 were integral components of the centrosome that colocalize with gamma-tubulin. Depletion of either protein led to centrosome amplification. However, the mechanisms that allow them to maintain centrosome integrity are different. MDC1-depleted cells exhibited centrosome overduplication, leading to multipolar mitosis, chromosome missegregation, and aneuploidy, whereas BRIT1 depletion led to misaligned spindles and/or lagging chromosomes with defective spindle checkpoint activation that resulted in defective cytokinesis and polyploidy. We further illustrated that both MDC1 and BRIT1 were negative regulators of Aurora A and Plk1, two centrosomal kinases involved in centrosome maturation and spindle assembly. Moreover, the levels of MDC1 and BRIT1 inversely correlated with centrosome amplification, defective mitosis and cancer metastasis in human breast cancer. Together, MDC1 and BRIT1 may function as tumor-suppressor genes, at least in part by orchestrating proper centrosome duplication and mitotic spindle assembly.

Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

mutations in the MCPH1 (microcephalin 1) gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS) gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC) samples, and observed that 14/71 (19.72%) informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22%) and 19/25 (76%) OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10%) tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

')