Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

8125

Name

ANP32A

Synonymous

C15orf1|HPPCn|I1PP2A|LANP|MAPM|PHAP1|PHAPI|PP32;acidic (leucine-rich) nuclear phosphoprotein 32 family, member A;ANP32A;acidic (leucine-rich) nuclear phosphoprotein 32 family, member A

Definition

acidic leucine-rich nuclear phosphoprotein 32 family member A|acidic nuclear phosphoprotein pp32|cerebellar leucine rich acidic nuclear protein|hepatopoietin Cn|inhibitor-1 of protein phosphatase-2A|leucine-rich acidic nuclear protein|mapmodulin|potent he

Position

15q23

Gene type

protein-coding

Title

Abstract

Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway.

A small molecule, alpha-(trichloromethyl)-4-pyridineethanol (PETCM), was identified by high-throughput screening as an activator of caspase-3 in extracts of a panel of cancer cells. PETCM was used in combination with biochemical fractionation to identify a pathway that regulates mitochondria-initiated caspase activation. This pathway consists of tumor suppressor putative HLA-DR-associated proteins (PHAP) and oncoprotein prothymosin-alpha (ProT). PHAP proteins promoted caspase-9 activation after apoptosome formation, whereas ProT negatively regulated caspase-9 activation by inhibiting apoptosome formation. PETCM relieved ProT inhibition and allowed apoptosome formation at a physiological concentration of deoxyadenosine triphosphate. Elimination of ProT expression by RNA interference sensitized cells to ultraviolet irradiation-induced apoptosis and negated the requirement of PETCM for caspase activation. Thus, this chemical-biological combinatory approach has revealed the regulatory roles of oncoprotein ProT and tumor suppressor PHAP in apoptosis.

Tumor suppressor pp32 represses cell growth through inhibition of transcription by blocking acetylation and phosphorylation of histone H3 and initiating its proapoptotic activity.

pp32 belongs to a family of leucine-rich acidic nuclear proteins, which play important roles in many cellular processes including regulation of chromatin remodeling, transcription, RNA transport, transformation and apoptosis. pp32 is described as a new tumor suppressor. It is unknown as to how pp32 works in tumor suppression. We found that overexpression of pp32 in human Jurkat T cells inhibits cell growth, and silenced pp32 promotes growth. We first showed that hyperacetylation and hyperphosphorylation of histone H3 are required for T-cell activation. Phosphorylation of histone H3 precedes acetylation during T-cell activation. pp32 specifically binds to histone H3 and blocks its acetylation and phosphorylation. pp32 directly initiates caspase activity and also promotes granzyme A-mediated caspase-independent cell death. Taken together, pp32 plays a repressive role by inhibiting transcription and triggering apoptosis.

pp32 (ANP32A) expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs.

The expression of protein phosphatase 32 (PP32, ANP32A) is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1), a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C), but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK), causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR), while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy.

MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4.

microRNA-21 (miR-21) is a key regulator of oncogenic processes. It is significantly elevated in the majority of human tumors and functionally linked to cellular proliferation, survival and migration. In this study, we used two experimental-based strategies to search for novel miR-21 targets. On the one hand, we performed a proteomic approach using two-dimensional differential gel electrophoresis (2D-DIGE) to identify proteins suppressed upon enhanced miR-21 expression in LNCaP human prostate carcinoma cells. The tumor suppressor acidic nuclear phosphoprotein 32 family, member A (ANP32A) (alias pp32 or LANP) emerged as the most strongly downregulated protein. On the other hand, we applied a mathematical approach to select correlated gene sets that are negatively correlated with primary-miR-21 (pri-miR-21) expression in published transcriptome data from 114 B-cell lymphoma cases. Among these candidates, we found tumor suppressor SMARCA4 (alias BRG1) together with the already validated miR-21 target, PDCD4. ANP32A and SMARCA4, which are both involved in chromatin remodeling processes, were confirmed as direct miR-21 targets by immunoblot analysis and reporter gene assays. Furthermore, knock down of ANP32A mimicked the effect of enforced miR-21 expression by enhancing LNCaP cell viability, whereas overexpression of ANP32A in the presence of high miR-21 levels abrogated the miR-21-mediated effect. In A172 glioblastoma cells, enhanced ANP32A expression compensated for the effects of anti-miR-21 treatment on cell viability and apoptosis. In addition, miR-21 expression clearly increased the invasiveness of LNCaP cells, an effect also seen in part upon downregulation of ANP32A. In conclusion, these results suggest that downregulation of ANP32A contributes to the oncogenic function of miR-21.

')