Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

8405

Name

SPOP

Synonymous

BTBD32|TEF2;speckle-type POZ protein;SPOP;speckle-type POZ protein

Definition

HIB homolog 1|roadkill homolog 1

Position

17q21.33

Gene type

protein-coding

Title

Abstract

Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers.

Mounting evidence exists that alterations of ubiquitination processes are involved in cancer pathogenesis. Speckle-type POZ protein (SPOP) is a key adaptor for Cul3-based ubiquitination process. Recent studies reported that SPOP may be a tumor suppressor gene (TSG) and somatic mutation of SPOP was detected in prostate cancer (PCA). The aim of this study was to see whether alterations of SPOP protein expression and somatic mutation of SPOP gene are features of cancers. In this study, we analyzed SPOP somatic mutation in 45 gastric (GC), 45 colorectal cancer (CRC) and 45 PCA by single-strand conformation polymorphism (SSCP). Also, we analyzed SPOP protein expression in 60 GC, 60 CRC and 60 PCA by immunohistochemistry. Overall, we detected three somatic missense mutations of SPOP gene in the coding sequences (p.Ser14Leu, p.Tyr87Cys and p.Phe133Leu). The mutations were observed in two PCA and one CRC. Of note, the p.Phe133Leu was a recurrent mutation reported in an earlier study. In the immunohistochemistry, SPOP protein was expressed in normal gastric, colonic and prostate epithelial cells, whereas it was lost in 30% of GC, 20% of CRC and 37% of PCA. Our data indicate that loss of SPOP expression was common in GC, CRC and PCA, but somatic mutation of SPOP in this study was rare in these tumors. Also, the data provide a possibility that loss of expression of SPOP gene might play a role in cancer pathogenesis by altering TSG functions of SPOP.

Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover.

The p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2 [nuclear receptor coactivator (NCOA)2], and SRC-3 [amplified in breast cancer 1 (AIB1)/NCOA3] are key pleiotropic "master regulators" of transcription factor activity necessary for cancer cell proliferation, survival, metabolism, and metastasis. SRC overexpression and overactivation occur in numerous human cancers and are associated with poor clinical outcomes and resistance to therapy. In prostate cancer (PC), the p160 SRCs play critical roles in androgen receptor transcriptional activity, cell proliferation, and resistance to androgen deprivation therapy. We recently demonstrated that the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger (POZ) domain protein (SPOP) interacts directly with SRC-3 and promotes its cullin 3-dependent ubiquitination and proteolysis in breast cancer, thus functioning as a potential tumor suppressor. Interestingly, somatic heterozygous missense mutations in the SPOP substrate-binding cleft recently were identified in up to 15% of human PCs (making SPOP the gene most commonly affected by nonsynonymous point mutations in PC), but their contribution to PC pathophysiology remains unknown. We now report that PC-associated SPOP mutants cannot interact with SRC-3 protein or promote its ubiquitination and degradation. Our data suggest that wild-type SPOP plays a critical tumor suppressor role in PC cells, promoting the turnover of SRC-3 protein and suppressing androgen receptor transcriptional activity. This tumor suppressor effect is abrogated by the PC-associated SPOP mutations. These studies provide a possible explanation for the role of SPOP mutations in PC, and highlight the potential of SRC-3 as a therapeutic target in PC.

')