Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

84707

Name

BEX2

Synonymous

BEX1|DJ79P11.1;brain expressed X-linked 2;BEX2;brain expressed X-linked 2

Definition

brain-expressed X-linked protein 2|hBex2|protein BEX2

Position

Xq22

Gene type

protein-coding

Title

Abstract

Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma.

Promoter hypermethylation and histone deacetylation are common epigenetic mechanisms implicated in the transcriptional silencing of tumor suppressor genes in human cancer. We treated two immortalized glioma cell lines, T98 and U87, and 10 patient-derived primary glioma cell lines with trichostatin A (TSA), a histone deacetylase inhibitor, or 5-aza-2-deoxycytidine (5-AzaC), a DNA methyltransferase inhibitor, to comprehensively identify the cohort of genes reactivated through the pharmacologic reversal of these distinct but related epigenetic processes. Whole-genome microarray analysis identified genes induced by TSA (653) or 5-AzaC treatment (170). We selected a subset of reactivated genes that were markedly induced (greater than two-fold) after treatment with either TSA or 5-AzaC in a majority of glioma cell lines but not in cultured normal astrocytes. We then characterized the degree of promoter methylation and transcriptional silencing of selected genes in histologically confirmed human tumor and nontumor brain specimens. We identified two novel brain expressed genes, BEX1 and BEX2, which were silenced in all tumor specimens and exhibited extensive promoter hypermethylation. Viral-mediated reexpression of either BEX1 or BEX2 led to increased sensitivity to chemotherapy-induced apoptosis and potent tumor suppressor effects in vitro and in a xenograft mouse model. Using an integrated approach, we have established a novel platform for the genome-wide screening of epigenetically silenced genes in malignant glioma. This experimental paradigm provides a powerful new method for the identification of epigenetically silenced genes with potential function as tumor suppressors, biomarkers for disease diagnosis and detection, and therapeutically reversible modulators of critical regulatory pathways important in glioma pathogenesis.

Hypomethylation and expression of BEX2, IGSF4 and TIMP3 indicative of MLL translocations in acute myeloid leukemia.

BACKGROUND: Translocations of the Mixed Lineage Leukemia (MLL) gene occur in a subset (5%) of acute myeloid leukemias (AML), and in mixed phenotype acute leukemias in infancy - a disease with extremely poor prognosis. Animal model systems show that MLL gain of function mutations may contribute to leukemogenesis. Wild-type (wt) MLL possesses histone methyltransferase activity and functions at the level of chromatin organization by affecting the expression of specific target genes. While numerous MLL fusion proteins exert a diverse array of functions, they ultimately serve to induce transcription of specific genes. Hence, acute lymphoblastic leukemias (ALL) with MLL mutations (MLLmu) exhibit characteristic gene expression profiles including high-level expression of HOXA cluster genes. Here, we aimed to relate MLL mutational status and tumor suppressor gene (TSG) methylation/expression in acute leukemia cell lines. RESULTS: Using MS-MLPA (methylation-specific multiplex ligation-dependent probe amplification assay), methylation of 24 different TSG was analyzed in 28 MLLmu and MLLwt acute leukemia cell lines. On average, 1.8/24 TSG were methylated in MLLmu AML cells, while 6.2/24 TSG were methylated in MLLwt AML cells. Hypomethylation and expression of the TSG BEX2, IGSF4 and TIMP3 turned out to be characteristic of MLLmu AML cell lines. MLLwt AML cell lines displayed hypermethylated TSG promoters resulting in transcriptional silencing. Demethylating agents and inhibitors of histone deacetylases restored expression of BEX2, IGSF4 and TIMP3, confirming epigenetic silencing of these genes in MLLwt cells. The positive correlation between MLL translocation, TSG hypomethylation and expression suggested that MLL fusion proteins were responsible for dysregulation of TSG expression in MLLmu cells. This concept was supported by our observation that Bex2 mRNA levels in MLL-ENL transgenic mouse cell lines required expression of the MLL fusion gene. CONCLUSION: These results suggest that the conspicuous expression of the TSG BEX2, IGSF4 and TIMP3 in MLLmu AML cell lines is the consequence of altered epigenetic properties of MLL fusion proteins.

')