Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

8848

Name

TSC22D1

Synonymous

Ptg-2|TGFB1I4|TSC22;TSC22 domain family, member 1;TSC22D1;TSC22 domain family, member 1

Definition

TGFB-stimulated clone 22 homolog|TGFbeta-stimulated clone 22|TSC22 domain family protein 1|cerebral protein 2|regulatory protein TSC-22|transcriptional regulator TSC-22|transforming growth factor beta-1-induced transcript 4 protein|transforming growth fac

Position

13q14

Gene type

protein-coding

Title

Abstract

The putative tumor suppressor Tsc-22 is downregulated early in chemically induced hepatocarcinogenesis and may be a suppressor of Gadd45b.

Tsc-22 is a novel tumor suppressor gene that represents a new class of transcription factors that has transcriptional repressor activity. We found Tsc-22 downregulation in livers from B6C3F1 mice following treatment for 2 weeks with carcinogenic doses of the antianxiety drug oxazepam (2500 ppm) or the peroxisome proliferator Wyeth-14,643 (500 ppm) but not with two other carcinogens such as o-nitrotoluene or methyleugenol or three noncarcinogens including p-nitrotoluene, eugenol, or acetaminophen. The expression of Tsc-22 was also repressed in B6C3F1 mouse liver tumors that were induced by several chemicals from 2-year carcinogenicity studies as well as in spontaneous liver tumors. To identify potential Tsc-22 target genes in mouse liver, we transfected small interference RNA (SiRNA) designed to inhibit Tsc-22 into murine liver BNL-CL.2 cells. We selected two potential transcriptional targets of Tsc-22, growth arrest and DNA damage-inducible gene 45 beta (Gadd45b) and leucine zipper, putative tumor suppressor 2 (Lzts2) to test based on our previous complementary DNA microarray studies, showing that expression of these cancer-associated genes was increased when Tsc-22 was repressed. SiRNA treatment of BNL-CL.2 cells with Tsc-22 oligonucleotides but not nonspecific oligonucleotides decreased RNA and protein expression of Tsc-22 by 80-90%, while expression of Gadd45b gene, but not Lzts2, was increased over time after an initial decrease. Treatment of these cells with oxazepam for 48 h also resulted in decreased Tsc-22 and increased Gadd45b expression. These data provide evidence that Tsc-22 is a suppressor of Gadd45b expression, which may contribute to an early antiapoptotic response.

Identification of TSC-22 as a potential tumor suppressor that is upregulated by Flt3-D835V but not Flt3-ITD.

Transforming growth factor-beta (TGF-beta)-stimulated clone-22 (TSC-22) was originally isolated as a TGF-beta-inducible gene. In this study, we identified TSC-22 as a potential leukemia suppressor. Two types of FMS-like tyrosine kinase-3 (Flt3) mutations are frequently found in acute myeloid leukemia: Flt3-ITD harboring an internal tandem duplication in the juxtamembrane domain associated with poor prognosis and Flt3-TKD harboring a point mutation in the kinase domain. Comparison of gene expression profiles between Flt3-ITD- and Flt3-TKD-transduced Ba/F3 cells revealed that constitutive activation of Flt3 by Flt3-TKD, but not Flt3-ITD, upregulated the expression of TSC-22. Importantly, treatment with an Flt3 inhibitor PKC412 or an Flt3 small interfering RNA decreased the expression level of TSC-22 in Flt3-TKD-transduced cells. Forced expression of TSC-22 suppressed the growth and accelerated the differentiation of several leukemia cell lines into monocytes, in particular, in combination with differentiation-inducing reagents. On the other hand, a dominant-negative form of TSC-22 accelerated the growth of Flt3-TKD-transduced 32Dcl.3 cells. Collectively, these results suggest that TSC-22 is a possible target of leukemia therapy.

TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia.

Aberrant methylation of tumor suppressor genes can lead to their silencing in many cancers. TSC-22 is a gene silenced in several solid tumors, but its function and the mechanism(s) responsible for its silencing are largely unknown. Here we demonstrate that the TSC-22 promoter is methylated in primary mouse T or natural killer (NK) large granular lymphocyte (LGL) leukemia and this is associated with down-regulation or silencing of TSC-22 expression. The TSC-22 deregulation was reversed in vivo by a 5-aza-2-deoxycytidine therapy of T or NK LGL leukemia, which significantly increased survival of the mice bearing this disease. Ectopic expression of TSC-22 in mouse leukemia or lymphoma cell lines resulted in delayed in vivo tumor formation. Targeted disruption of TSC-22 in wild-type mice enhanced proliferation and in vivo repopulation efficiency of hematopoietic precursor cells (HPCs). Collectively, our data suggest that TSC-22 normally contributes to the regulation of HPC function and is a putative tumor suppressor gene that is hypermethylated and silenced in T or NK LGL leukemia.

')