Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

9590

Name

AKAP12

Synonymous

AKAP250|SSeCKS;A kinase (PRKA) anchor protein 12;AKAP12;A kinase (PRKA) anchor protein 12

Definition

A-kinase anchor protein 12|A-kinase anchor protein, 250kDa|AKAP 250|Src-Suppressed C Kinase Substrate|kinase scaffold protein gravin|myasthenia gravis autoantigen gravin

Position

6q24-q25

Gene type

protein-coding

Title

Abstract

A-kinase anchoring protein 12 regulates the completion of cytokinesis.

A-kinase anchoring protein 12 (AKAP12) gene is frequently inactivated in human gastric cancer and in several other cancers due to promoter hypermethylation. However, the biological function of AKAP12 in tumorigenesis remains to be identified. Aneuploidy, a hallmark of cancer cells, is often caused by abnormal cell division. In the present study, AKAP12 was found to localize to the cell periphery during interphase and to the actomyosin contractile ring during cytokinesis. Furthermore, AKAP12 depletion using small interfering RNA increased the number of multinucleated cells, and disrupted the completion of cytokinesis. Interestingly, the inhibition of myosin light chain kinase (MLCK), a key regulator of actomyosin contractility, removed AKAP12 from the cell periphery during interphase and from the contractile ring during cytokinesis, suggesting that AKAP12 might be a downstream effector of MLCK. Our findings implicate AKAP12 in the regulation of cytokinesis progression, and suggest a novel role for AKAP12 tumor suppressor.

Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms.

The A kinase anchor protein 12 (AKAP12) is a central mediator of protein kinase A and protein kinase C signaling. Although AKAP12 has been described to act as a tumor suppressor and its expression is frequently down-regulated in several human malignancies, the underlying molecular mechanisms responsible for the AKAP12 reduction are poorly understood. We therefore analyzed the expression of AKAP12 and its genetic and epigenetic regulatory mechanisms in human hepatocarcinogenesis. Based on tissue microarray analyses (n = 388) and western immunoblotting, we observed a significant reduction of AKAP12 in cirrhotic liver (CL), premalignant lesions (DN), and hepatocellular carcinomas (HCCs) compared to histologically normal liver specimens (NL). Analyses of array comparative genomic hybridization data (aCGH) from human HCCs revealed chromosomal losses of AKAP12 in 36% of cases but suggested additional mechanisms underlying the observed reduction of AKAP12 expression in hepatocarcinogenesis. Quantitative methylation analysis by MassARRAY of NL, CL, DN, and HCC tissues, as well as of various tumorigenic and nontumorigenic liver cell lines revealed specific hypermethylation of the AKAP12alpha promoter but not of the AKAP12beta promoter in HCC specimens and in HCC cell lines. Consequently, restoration experiments performed with 5-aza-2deoxycytidine drastically increased AKAP12alpha mRNA levels in a HCC cell line (AKN1) paralleled by AKAP12alpha promoter demethylation. As hypermethylation is not observed in CL and DN, we investigated microRNA-mediated posttranscriptional regulation as an additional mechanism to explain reduced AKAP12 expression. We found that miR-183 and miR-186 are up-regulated in CL and DN and are able to target AKAP12. CONCLUSION: In addition to genetic alterations, epigenetic mechanisms are responsible for the reduction of the tumor suppressor gene AKAP12 in human hepatocarcinogenesis.

The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells.

Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies have shown that specific inhibition of HDAC7 blocks angiogenesis both in vitro and in vivo. However, the underlying molecular mechanisms are not fully understood and hence preclude any meaningful development of suitable therapeutic modalities. The goal of the present study was to further the understanding of HDAC7 epigenetic control of angiogenesis in human endothelial cells using the proteomic approach. The underlying problem was approached through siRNA-mediated gene-expression silencing of HDAC7 in human umbilical vein endothelial cells (HUVECs). To this end, HUVEC proteins were extracted and proteomically analyzed. The emphasis was placed on up-regulated proteins, as these may represent potential direct epigenetic targets of HDAC7. Among several proteins, A-kinase anchor protein 12 (AKAP12) was the most reproducibly up-regulated protein following HDAC7 depletion. This overexpression of AKAP12 was responsible for the inhibition of migration and tube formation in HDAC7-depleted HUVEC. Mechanistically, H3 histones associated with AKAP12 promoter were acetylated following the removal of HDAC7, leading to an increase in its mRNA and protein levels. AKAP12 is responsible for protein kinase C mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 increasingly binds to the chromatin and AKAP12 promoter and is necessary for maintaining the elevated levels of AKAP12 following HDAC7 knockdown. We demonstrated for the first time that AKAP12 tumor/angiogenesis suppressor gene is an epigenetic target of HDAC7, whose elevated levels lead to a negative regulation of HUVEC migration and inhibit formation of tube-like structures.

')