Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

23328

Name

SASH1

Synonymous

RP3-323M4.1|SH3D6A|dJ323M4|dJ323M4.1;SAM and SH3 domain containing 1;SASH1;SAM and SH3 domain containing 1

Definition

2500002E12Rik|SAM and SH3 domain-containing protein 1|proline-glutamate repeat-containing protein

Position

6q24.3

Gene type

protein-coding

Source

Count: 3; Pubmed_search,Generif,UniProt

Sentence

Abstract

The candidate tumor suppressor SASH1 interacts with the actin cytoskeleton and stimulates cell-matrix adhesion.

SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell-matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells.CI - Copyright (c) 2011 Elsevier Ltd. All rights reserved.

tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers

Loss of heterozygosity (LOH) and in silico expression analysis were applied to identify genes significantly downregulated in breast cancer within the genomic interval 6q23-25. Systematic comparison of candidate EST sequences with genomic sequences from this interval revealed the genomic structure of a potential target gene on 6q24.3, which we called SAM and SH3 domain containing 1 (SASH1). Loss of the gene-internal marker D6S311, found in 30% of primary breast cancer, was significantly correlated with poor survival and increase in tumor size. Two SASH1 transcripts of approximately 4.4 and 7.5 kb exist and are predominantly transcribed in the human breast, lung, thyroid, spleen, placenta and thymus. In breast cancer cell lines, SASH1 is only expressed at low levels. SASH1 is downregulated in the majority (74%) of breast tumors in comparison with corresponding normal breast epithelial tissues. In addition, SASH1 is also downregulated in tumors of the lung and thyroid. Analysis of the protein domain structure revealed that SASH1 is a member of a recently described family of SH3/SAM adapter molecules and thus suggests a role in signaling pathways. We assume that SASH1 is a new tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers. We were unable to find mutations in the coding region of the gene in primary breast cancers showing LOH within the critical region. We therefore hypothesize that other mechanisms as for instance methylation of the promoter region of SASH1 are responsible for the loss of expression of SASH1 in primary and metastatic breast cancer.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas