Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

644943

Name

RASSF10

Synonymous

-;Ras association (RalGDS/AF-6) domain family (N-terminal) member 10;RASSF10;Ras association (RalGDS/AF-6) domain family (N-terminal) member 10

Definition

ras association domain-containing protein 10

Position

11p15.2

Gene type

protein-coding

Source

Count: 1; Generif

Sentence

Abstract

This is the first report demonstrating that RASSF10 can act as a tumor suppressor gene and is frequently methylated in gliomas

We have recently described the N-terminal RAS association domain family of genes, RASSF7-10. Previously, we cloned the N-terminal RASSF10 gene and demonstrated frequent methylation of the associated 5'-CpG island in acute lymphoblastic leukemia. To characterize RASSF10 gene expression, we demonstrate that in developing Xenopus embryos, RASSF10 shows a very striking pattern in the rhombencephalon (hind brain). It is also expressed in other parts of the brain and other organs. Due to the well-defined expression pattern in the brain of Xenopus embryos, we analyzed the methylation status of the RASSF10-associated 5'-CpG island in astrocytic gliomas. RASSF10 was frequently methylated in WHO grade II-III astrocytomas and WHO grade IV primary glioblastomas (67.5%), but was unmethylated in grade I astrocytomas and in DNA from age matched control brain samples. RASSF10 gene expression both at the mRNA and protein levels could be switched back on in methylated glioma cell lines after treatment with 5-aza-2'-deoxycytidine. In secondary glioblastomas (sGBM), RASSF10 methylation was an independent prognostic factor associated with worst progression-free survival and overall survival and occurred at an early stage in their development. In cell culture experiments, overexpression of RASSF10 mediated a reduction in the colony forming ability of two RASSF10-methylated glioma cell lines. Conversely, RNAi-mediated knockdown of RASSF10-stimulated anchorage-independent growth of U87 glioma cells, increased their viability and caused an increase in the cells' proliferative ability. We generated and characterized a RASSF10-specific antibody and demonstrated for the first time that RASSF10 subcellular localization is cell-cycle dependent with RASSF10 colocalizing to centrosomes and associated microtubules during mitosis. This is the first report demonstrating that RASSF10 can act as a tumor suppressor gene and is frequently methylated in gliomas and can potentially be developed into a prognostic marker for sGBM.

RASSF10 may encode a novel epigenetically inactivated candidate tumor suppressor gene in thyroid carcinogenesis.

The Ras association domain family (RASSF) encodes for distinct tumor suppressors and several members are frequently silenced in human cancer. In our study, we analyzed the role of a novel RASSF member termed RASSF10 in thyroid carcinogenesis. The RASSF10 CpG island promoter was intensively methylated in nine thyroid cancer cell lines and in 66% of primary thyroid carcinomas. RASSF10 methylation was significantly increased in primary thyroid carcinoma compared to normal thyroid and follicular adenoma (0 and 10%, respectively; p < 0.004). Patients with cancerous lymph nodes were significantly hypermethylated for RASSF10 in primary thyroid tumors compared to those with non-affected lymph nodes (79 vs. 36%; p = 0.047). RASSF10 promoter hypermethylation correlated with a reduced expression and treatment with a DNA methylation inhibitor reactivated RASSF10 transcription. In summary, our data show frequent epigenetic inactivation of RASSF10 in thyroid cancer. These results suggest that RASSF10 may encode a novel epigenetically inactivated candidate tumor suppressor gene in thyroid carcinogenesis.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas