Pulmonary Arterial Hypertension KnowledgeBase (PAHKB)
PAHKB
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

1524

Name

CX3CR1

Synonymous

CCRL1|CMKBRL1|CMKDR1|GPR13|GPRV28|V28;chemokine (C-X3-C motif) receptor 1;CX3CR1;chemokine (C-X3-C motif) receptor 1

Definition

C-X3-C CKR-1|CMK-BRL-1|CMK-BRL1|CX3C chemokine receptor 1|G protein-coupled receptor 13|G-protein coupled receptor 13|beta chemokine receptor-like 1|chemokine (C-C) receptor-like 1|chemokine (C-X3-C) receptor 1|fractalkine receptor

Position

3p21.3

Gene type

protein-coding

Source

Count: CX3CR1; 1524

Sentence

Abstract

CX(3)C chemokine fractalkine in pulmonary arterial hypertension.

Perivascular infiltrates composed of macrophages and lymphocytes have been described in lung biopsies of patients displaying pulmonary arterial hypertension (PAH), suggesting that circulating inflammatory cells can be recruited in affected vessels. CX(3)C chemokine fractalkine is produced by endothelial cells and promotes leukocyte recruitment, but unlike other chemokines, it can capture leukocytes rapidly and firmly in an integrin-independent manner under high blood flow. We therefore hypothesized that fractalkine may contribute to pulmonary inflammatory cell recruitment in PAH. expression and function of the fractalkine receptor (CX(3)CR1) were studied by use of triple-color flow cytometry on circulating T-lymphocyte subpopulations in freshly isolated peripheral blood mononuclear cells from control subjects and patients with PAH. Plasma-soluble fractalkine concentrations were measured by enzyme-linked immunosorbent assay. Finally, fractalkine mRNA and protein expression were analyzed in lung samples by reverse transcriptase-polymerase chain reaction or in situ hybridization and immunohistochemistry, respectively. In patients with PAH, CX(3)CR1 expression and function are upregulated in circulating T-lymphocytes, mostly of the CD4+ subset, and plasma soluble fractalkine concentrations are elevated, as compared with control subjects. Fractalkine mRNA and protein product are expressed in pulmonary artery endothelial cells. We conclude that inflammatory mechanisms involving chemokine fractalkine and its receptor CX(3)CR1 may have a role in the natural history of PAH.

Polymorphism of the fractalkine receptor CX3CR1 and systemic sclerosis-associated pulmonary arterial hypertension.

Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc.

Polymorphism of the fractalkine receptor CX3CR1 and systemic sclerosis-associated pulmonary arterial hypertension.

Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc.

')