General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 406991 |
Name | MIR21 |
Synonymous | MIRN21|hsa-mir-21|miR-21|miRNA21;microRNA 21;MIR21;microRNA 21 |
Definition | - |
Position | 17q23.1 |
Gene type | miscRNA |
Source | Count: MIR21; 406991 |
Sentence |
Abstract |
"Table 1, complied list of hypoxamirs with functions in PH that have been experimentally established or highly suspected." | Over the past decade, the importance of non-coding RNA such as microRNA has been established in numerous processes that drive human pathogenesis. These crucial molecular regulators modulate networks of target gene transcripts that, in turn, orchestrate cellular phenotypes such as cell survival, differentiation, proliferation, and metabolism among others and thus affect cardiopulmonary vascular disease conditions. Many of these same pathophenotypes figure prominently in the complex pathogenesis of pulmonary hypertension, an enigmatic vascular disorder characterized by a histological panvasculopathy and driven by disparate upstream triggers such as hypoxia, inflammation, and bone morphogenetic protein signaling. Yet, the importance of just a few microRNAs in pulmonary hypertension has been recognized, and we are only beginning to understand the integrative functions of these molecules in this disease. By combining systems biology with traditional experimental approaches, more direct insight into the pleiotropy of microRNA should not only further reveal the spectrum of molecular pathways that cause pulmonary hypertension, but also offer novel and much needed diagnostic and therapeutic strategies. |
A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in pulmonary hypertension. | BACKGROUND: pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. METHODS AND RESULTS: Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21-null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. CONCLUSIONS: A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH. |