General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 4773 |
Name | NFATC2 |
Synonymous | NFAT1|NFATP;nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2;NFATC2;nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 |
Definition | NF-ATc2|NFAT pre-existing subunit|NFAT transcription complex, preexisting component|T cell transcription factor NFAT1|T-cell transcription factor NFAT1|nuclear factor of activated T-cells, cytoplasmic 2|nuclear factor of activated T-cells, preexisting com |
Position | 20q13.2 |
Gene type | protein-coding |
Source | Count: NFATC2; 4773 |
Sentence |
Abstract |
"Heightened expression of the transcription factor nuclear factor of activated T cells c2 (NFATc2), which is associated with activated inflammatory cells, may underlie PAH." | Recent clinical and experimental studies are redefining the cellular and molecular bases of pulmonary arterial hypertension (PAH). The genetic abnormalities first identified in association with the idiopathic form of PAH--together with a vast increase in our understanding of cell signaling, cell transformation, and cell-cell interactions; gene expression; microRNA processing; and mitochondrial and ion channel function--have helped explain the abnormal response of vascular cells to injury. Experimental and clinical studies now converge on the intersection and interactions between a genetic predisposition involving the BMPR2 signaling pathway and an impaired metabolic and chronic inflammatory state in the vessel wall. These deranged processes culminate in an exuberant proliferative response that occludes the pulmonary arterial (PA) lumen and obliterates the most distal intraacinar vessels. Here, we describe emerging therapies based on preclinical studies that address these converging pathways. |
The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. | In pulmonary arterial hypertension (PAH), antiapoptotic, proliferative, and inflammatory diatheses converge to create an obstructive vasculopathy. A selective down-regulation of the Kv channel Kv1.5 has been described in human and animal PAH. The resultant increase in intracellular free Ca(2+) ([Ca(2+)](i)) and K(+) ([K(+)](i)) concentrations explains the pulmonary artery smooth muscle cell (PASMC) contraction, proliferation and resistance to apoptosis. The recently described PASMC hyperpolarized mitochondria and increased bcl-2 levels also contribute to apoptosis resistance in PAH. The cause of the Kv1.5, mitochondrial, and inflammatory abnormalities remains unknown. We hypothesized that these abnormalities can be explained in part by an activation of NFAT (nuclear factor of activated T cells), a Ca(2+)/calcineurin-sensitive transcription factor. We studied PASMC and lungs from six patients with and four without PAH and blood from 23 PAH patients and 10 healthy volunteers. Compared with normal, PAH PASMC had decreased Kv current and Kv1.5 expression and increased [Ca(2+)](i), [K(+)](i), mitochondrial potential (Delta Psi m), and bcl-2 levels. PAH but not normal PASMC and lungs showed activation of NFATc2. Inhibition of NFATc2 by VIVIT or cyclosporine restored Kv1.5 expression and current, decreased [Ca(2+)](i), [K(+)](i), bcl-2, and Delta Psi m, leading to decreased proliferation and increased apoptosis in vitro. In vivo, cyclosporine decreased established rat monocrotaline-PAH. NFATc2 levels were increased in circulating leukocytes in PAH versus healthy volunteers. CD3-positive lymphocytes with activated NFATc2 were seen in the arterial wall in PAH but not normal lungs. The generalized activation of NFAT in human and experimental PAH might regulate the ionic, mitochondrial, and inflammatory remodeling and be a therapeutic target and biomarker. |