Pulmonary Arterial Hypertension KnowledgeBase (PAHKB)
PAHKB
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

7045

Name

TGFBI

Synonymous

BIGH3|CDB1|CDG2|CDGG1|CSD|CSD1|CSD2|CSD3|EBMD|LCD1;transforming growth factor, beta-induced, 68kDa;TGFBI;transforming growth factor, beta-induced, 68kDa

Definition

RGD-CAP|RGD-containing collagen-associated protein|beta ig-h3|kerato-epithelin|transforming growth factor-beta-induced protein ig-h3

Position

5q31

Gene type

protein-coding

Source

Count: TGFBI; 7045

Sentence

Abstract

"In the present study, we determined that pulmonary arteries in normal lungs and in lungs of patients with emphysema and idiopathic pulmonary arterial hypertension comparably expressed transforming growth factor-beta receptors I and II, Smad(1, 5, 8), Smad2, Smad3, Smad4, phosphorylated Smad(1, 5, 8), and phosphorylated Smad2 (the latter two both indicative of active in vivo signaling) in endothelial cells, as assessed by immunohistochemistry and quantitative morphometry. Medial or intimal smooth muscle cells had weak or absent expression of these molecules. In clear contrast to endothelial cell expression in pulmonary arteries and in endothelial cells lining incipient vessels within plexiform lesions of hypertensive lungs, endothelial cells present in the core of the lesions lacked expression of all examined members of the signaling molecules. "

mutations in transforming growth factor-beta family receptor-II, bone morphogenetic protein receptor-2, and activin-like kinase-1 have been associated with pulmonary hypertension. In the present study, we determined that pulmonary arteries in normal lungs and in lungs of patients with emphysema and idiopathic pulmonary arterial hypertension comparably expressed transforming growth factor-beta receptors I and II, Smad(1, 5, 8), Smad2, Smad3, Smad4, phosphorylated Smad(1, 5, 8), and phosphorylated Smad2 (the latter two both indicative of active in vivo signaling) in endothelial cells, as assessed by immunohistochemistry and quantitative morphometry. Medial or intimal smooth muscle cells had weak or absent expression of these molecules. In clear contrast to endothelial cell expression in pulmonary arteries and in endothelial cells lining incipient vessels within plexiform lesions of hypertensive lungs, endothelial cells present in the core of the lesions lacked expression of all examined members of the signaling molecules. These findings were made irrespective of the mutation status of bone morphogenetic protein receptor-2 in hypertensive patients. Our findings suggest that pulmonary artery endothelial cells in both normal and severely hypertensive lungs have active transforming growth factor-beta family signaling, and that loss of signaling might contribute to the abnormal growth of endothelial cells in plexiform lesions in idiopathic pulmonary arterial hypertension.

')