1BMC Genomics 2013 -1 14 Suppl 5: S10
PMID24564241
TitleAnalysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system.
Abstractschizophrenic patients show lower incidences of cancer, implicating schizophrenia may be a protective factor against cancer. To study the genetic correlation between the two diseases, a specific PPI network was constructed with candidate genes of both schizophrenia and hepatocellular carcinoma. The network, designated schizophrenia-hepatocellular carcinoma network (SHCN), was analysed and cliques were identified as potential functional modules or complexes. The findings were compared with information from pathway databases such as KEGG, Reactome, PID and ConsensusPathDB.
The functions of mediator genes from SHCN show immune system and cell cycle regulation have important roles in the eitology mechanism of schizophrenia. For example, the over-expressing schizophrenia candidate genes, SIRPB1, SYK and LCK, are responsible for signal transduction in cytokine production; immune responses involving IL-2 and TREM-1/DAP12 pathways are relevant for the etiology mechanism of schizophrenia. Novel treatments were proposed by searching the target genes of FDA approved drugs with genes in potential protein complexes and pathways. It was found that Vitamin A, retinoid acid and a few other immune response agents modulated by RARA and LCK genes may be potential treatments for both schizophrenia and hepatocellular carcinoma.
This is the first study showing specific mediator genes in the SHCN which may suppress tumors. We also show that the schizophrenic protein interactions and modulation with cancer implicates the importance of immune system for etiology of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
2BMC Genomics 2013 -1 14 Suppl 5: S10
PMID24564241
TitleAnalysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system.
Abstractschizophrenic patients show lower incidences of cancer, implicating schizophrenia may be a protective factor against cancer. To study the genetic correlation between the two diseases, a specific PPI network was constructed with candidate genes of both schizophrenia and hepatocellular carcinoma. The network, designated schizophrenia-hepatocellular carcinoma network (SHCN), was analysed and cliques were identified as potential functional modules or complexes. The findings were compared with information from pathway databases such as KEGG, Reactome, PID and ConsensusPathDB.
The functions of mediator genes from SHCN show immune system and cell cycle regulation have important roles in the eitology mechanism of schizophrenia. For example, the over-expressing schizophrenia candidate genes, SIRPB1, SYK and LCK, are responsible for signal transduction in cytokine production; immune responses involving IL-2 and TREM-1/DAP12 pathways are relevant for the etiology mechanism of schizophrenia. Novel treatments were proposed by searching the target genes of FDA approved drugs with genes in potential protein complexes and pathways. It was found that Vitamin A, retinoid acid and a few other immune response agents modulated by RARA and LCK genes may be potential treatments for both schizophrenia and hepatocellular carcinoma.
This is the first study showing specific mediator genes in the SHCN which may suppress tumors. We also show that the schizophrenic protein interactions and modulation with cancer implicates the importance of immune system for etiology of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Genes Brain Behav. 2014 Sep 13: 653-62
PMID25039969
TitleSIRPB1 copy-number polymorphism as candidate quantitative trait locus for impulsive-disinhibited personality.
AbstractImpulsive-disinhibited personality (IDP) is a behavioral trait mainly characterized by seeking immediate gratification at the expense of more enduring or long-term gains. This trait has a major role in the development of several disinhibitory behaviors and syndromes, including psychopathy, attention-deficit and hyperactivity disorder, cluster-B personality disorders, criminality and alcoholism. Available data consistently support a strong heritable component, accounting for 30-60% of the observed variance in personality traits. A genome-wide analysis of copy-number variants was designed to identify novel genetic pathways associated with the IDP trait, using a series of 261 male participants with maximized opposite IDP scores. Quantitative trait locus analysis of candidate copy-number variants (CNVs) was conducted across the entire IDP continuum. Functional effects of associated variants were evaluated in zebrafish embryos. A common CNV mapping to the immune-related gene SIRPB1 was significantly associated with IDP scores in a dose-dependent manner (?=-0.172, P<0.017). Expression quantitative trait locus analysis of the critical region revealed higher SIRPB1 mRNA levels associated with the haplotype containing the deleted allele (P<0.0007). Epigenetic marks highlighted the presence of two potential insulators within the deleted region, confirmed by functional assays in zebrafish embryos, which suggests that SIRPB1 expression rates are affected by the presence/absence of the insulator regions. Upregulation of SIRPB1 has been described in prefrontal cortex of patients with schizophrenia, providing a link between SIRPB1 and diseases involving disinhibition and failure to control impulsivity. We propose SIRPB1 as a novel candidate gene to account for phenotypic differences observed in the IDP trait.
SCZ Keywordsschizophrenia, schizophrenic