1Eur. J. Hum. Genet. 2001 Jun 9: 469-72
PMID11436130
TitleGenetic association studies of schizophrenia using the 8p21-22 genes: prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1).
Abstractschizophrenia is a common, genetically heterogeneous disorder with a lifetime prevalence of approximately 1% in the general population. Linkage studies of affected families have now strongly implicated a susceptibility locus on chromosome 8p21-22. Tests of allelic association with markers on 8p21-22 should be able to localise any quantitative trait nucleotides (QTN's) or susceptibility mutations to within a few hundred kilobases. Three brain expressed candidate susceptibility genes, prepronociceptin (PNOC), neuronal cholinergic receptor, nicotinic, alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1) have been mapped to chromosome 8p21-22. A case-control, allelic association study was performed using a novel highly polymorphic dinucleotide repeat, D8S2611 near the PNOC gene, two previously characterised dinucleotide repeats, D8S131 and D8S131P at the CHRNA2 locus and an RFLP at the 3'UTR of the arylamine N-acetyltransferase 1 (NAT1) gene. No differences were found in allele frequencies between the patient and control groups. DNA variations or mutations at or near the three genes under study are unlikely to increase susceptibility to schizophrenia in our population sample.
SCZ Keywordsschizophrenia, schizophrenic
2Hum. Hered. 2004 -1 57: 59-68
PMID15192278
TitleA novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families.
AbstractSmoking is a common correlate of schizophrenia, which leads to medical morbidity. Although twin and adoption studies have consistently implicated genes in the etiology of both smoking and schizophrenia, finding genes has been difficult. Several authors have suggested that clinical or neurobiological features associated with schizophrenia, such as smoking, might improve the ability to detect schizophrenia susceptibility genes by identifying genes related to the etiology of that feature. The objective of this study is to assess evidence for linkage of sixteen nicotinic acetylcholine receptor genes and smoking in schizophrenia families, using data from the NIMH Genetics Initiative for schizophrenia. Sixteen nicotinic acetylcholine receptor genes were selected prior to analysis. We used a multipoint sibling pair linkage analysis program, SIBPAL2, with a smoking trait in schizophrenia families. The significance of the group of candidate genes, in addition to each individual candidate gene, was assessed using permutation testing, which adjusted for multiple comparisons. The group of genes showed significant linkage to the smoking trait after adjusting for multiple comparisons through permutation testing (p = 0.039). In addition, two of the individual candidate genes were significant (CHRNA2, p = 0.044) and (CHRNB2, p = 0.015) and two genes were marginally significant (CHRNA7, p = 0.095; CHRNA1, p = 0.076). The significance of the complex hypothesis, involving sixteen genes, implicates the nicotinic system in smoking for schizophrenic families. Individual gene analysis suggests that CHRNA2 and CHRNB2 may play a particular role in this involvement. Such findings help prioritize genes for future case control studies. In addition, we provide a novel permutation method that is useful in future analyses involving a single hypothesis, with multiple candidate genes.
SCZ Keywordsschizophrenia, schizophrenic
3Hum. Hered. 2004 -1 57: 59-68
PMID15192278
TitleA novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families.
AbstractSmoking is a common correlate of schizophrenia, which leads to medical morbidity. Although twin and adoption studies have consistently implicated genes in the etiology of both smoking and schizophrenia, finding genes has been difficult. Several authors have suggested that clinical or neurobiological features associated with schizophrenia, such as smoking, might improve the ability to detect schizophrenia susceptibility genes by identifying genes related to the etiology of that feature. The objective of this study is to assess evidence for linkage of sixteen nicotinic acetylcholine receptor genes and smoking in schizophrenia families, using data from the NIMH Genetics Initiative for schizophrenia. Sixteen nicotinic acetylcholine receptor genes were selected prior to analysis. We used a multipoint sibling pair linkage analysis program, SIBPAL2, with a smoking trait in schizophrenia families. The significance of the group of candidate genes, in addition to each individual candidate gene, was assessed using permutation testing, which adjusted for multiple comparisons. The group of genes showed significant linkage to the smoking trait after adjusting for multiple comparisons through permutation testing (p = 0.039). In addition, two of the individual candidate genes were significant (CHRNA2, p = 0.044) and (CHRNB2, p = 0.015) and two genes were marginally significant (CHRNA7, p = 0.095; CHRNA1, p = 0.076). The significance of the complex hypothesis, involving sixteen genes, implicates the nicotinic system in smoking for schizophrenic families. Individual gene analysis suggests that CHRNA2 and CHRNB2 may play a particular role in this involvement. Such findings help prioritize genes for future case control studies. In addition, we provide a novel permutation method that is useful in future analyses involving a single hypothesis, with multiple candidate genes.
SCZ Keywordsschizophrenia, schizophrenic
4Biochem. Pharmacol. 2007 Oct 74: 1308-14
PMID17662253
TitleThe role of the nicotinic acetylcholine receptors in sleep-related epilepsy.
AbstractThe role of neuronal acetylcholine receptors (nAChRs) in epilepsy has been clearly established by the finding of mutations in a subset of genes coding for subunits of the nAChRs in a form of sleep-related epilepsy with familial occurrence in about 30% of probands and dominant inheritance, named autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Sporadic and familial forms have similar clinical and EEG features. Seizures begin in middle childhood as clusters of sleep-related attacks with prominent motor activity, and sustained dystonic posturing. In addition to nocturnal seizures, psychosis or schizophrenia, behavioral disorders, memory deficits and mental retardation were described in some individuals. Although over hundred families are on record, only a minority of them have been linked to mutations in the genes coding for the alpha4, alpha2 and beta2 (CHRNA4, CHRNA2, and CHRNB2) subunits of the nAChRs, indicating that ADNFLE is genetically heterogeneous despite a relatively homogeneous clinical picture. Functional characterization of some mutations suggests that gain of the receptor function might be the basis for epileptogenesis. In vitro and in vivo studies have shown high density of nAChRs in the thalamus, over activated brainstem ascending cholinergic pathway and enhanced GABAergic function, reinforcing the hypothesis that cortico-subcortical networks, regulating arousal from sleep, play a central role in seizure precipitation in ADNFLE.
SCZ Keywordsschizophrenia, schizophrenic
5Mol. Psychiatry 2009 Jun 14: 563-89
PMID19204725
TitleChromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer.
AbstractDefects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
SCZ Keywordsschizophrenia, schizophrenic
6J. Comp. Neurol. 2015 Aug 523: 1608-21
PMID25641263
TitleThe ?2-subunit of the nicotinic cholinergic receptor is specifically expressed in medial subpallium-derived cells of mammalian amygdala.
AbstractNicotinic acetylcholine receptor (nAChR) subtypes are expressed in specific neuronal populations, which are involved in numerous neural functions such as sleep, fatigue, anxiety, and cognition, as well as the central processing of pain and food intake. Moreover, mutations in nAChRs subunits have been related to frontal lobe epilepsy, neurodegenerative diseases, and other neurological disorders, including schizophrenia and attention deficit and hyperactivity disorder (ADHD). Previous studies have shown that the ?2-subunit of the AChR (CHRNA2) is expressed in the basal forebrain, in the septum, and in some amygdalar nuclei in the adult rodent brain. However, although the importance of this amygdalar expression in emotion-related behavior and the physiopathology of neuropsychiatric disorders has been accepted, a detailed study of the CHRNA2 expression pattern during development has been lacking. In this study we found that CHRNA2 is specifically expressed in medial subpallium-derived amygdalar nuclei from early developmental stages to adult. This finding could help us to better understand the role of CHRNA2 in the differentiation and functional maturation of amygdalar neurons involved in cholinergic-regulated emotional behavior.
SCZ Keywordsschizophrenia, schizophrenic