1Int. J. Neuropsychopharmacol. 2012 Aug 15: 907-17
PMID21733226
TitleThe effect of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex.
AbstractClozapine is an antipsychotic drug that has a greater efficacy than other medications in some contexts, especially for the treatment of treatment-resistant schizophrenia. However, clozapine induces more metabolic side-effects involving abnormality in lipid metabolism compared to other antipsychotics. AMP-activated protein kinase (AMPK) plays a central role in controlling lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT1) pathway. In this study, we investigated the effect of a single intraperitoneal injection of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex, which has been implicated as a target site for this antipsychotic drug. At 2 h after injection, the clinically relevant dose of clozapine had activated AMPK, with increased phosphorylation of AMPK? at Thr(172), and had inactivated ACC, with increased phosphorylation of ACC at Ser(79). In addition, clozapine activated the brain-specific isoform of CPT1, CPT1C, whose activity is inhibited by unphosphorylated ACC, in the rat frontal cortex. Immunohistochemistry and immunofluorescence analysis showed that clozapine induced an increase in number of p-AMPK? (Thr(172))- and p-ACC (Ser(79))-positive cells among the neurons of the rat frontal cortex. Taken together, these results show that clozapine activated the AMPK-ACC-CPT1 pathway in the neurons of the rat frontal cortex. These findings indicate that the antipsychotic agent clozapine affects the lipid regulatory system of neurons in the brain.
SCZ Keywordsschizophrenia
2Mol. Neurobiol. 2015 Oct 52: 826-36
PMID26041663
TitleThe Carnitine Palmitoyl Transferase (CPT) System and Possible Relevance for Neuropsychiatric and Neurological Conditions.
AbstractThe carnitine palmitoyl transferase (CPT) system is a multiprotein complex with catalytic activity localized within a core represented by CPT1 and CPT2 in the outer and inner membrane of the mitochondria, respectively. Two proteins, the acyl-CoA synthase and a translocase also form part of this system. This system is crucial for the mitochondrial beta-oxidation of long-chain fatty acids. CPT1 has two well-known isoforms, CPT1a and CPT1b. CPT1a is the hepatic isoform and CPT1b is typically muscular; both are normally utilized by the organism for metabolic processes throughout the body. There is a strong evidence for their involvement in various disease states, e.g., metabolic syndrome, cardiovascular diseases, and in diabetes mellitus type 2. Recently, a new, third isoform of CPT was described, CPT1C. This is a neuronal isoform and is prevalently localized in brain regions such as hypothalamus, amygdala, and hippocampus. These brain regions play an important role in control of food intake and neuropsychiatric and neurological diseases. CPT activity has been implicated in several neurological and social diseases mainly related to the alteration of insulin equilibrium in the brain. These pathologies include Parkinson's disease, Alzheimer's disease, and schizophrenia. Evolution of both Parkinson's disease and Alzheimer's disease is in some way linked to brain insulin and related metabolic dysfunctions with putative links also with the diabetes type 2. Studies show that in the CNS, CPT1C affects ceramide levels, endocannabionoids, and oxidative processes and may play an important role in various brain functions such as learning.
SCZ Keywordsschizophrenia