1Biol. Psychiatry 2011 Jan 69: 90-6
PMID20950796
TitleCandidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area.
AbstractThe Human Natural Killer-1 carbohydrate (HNK-1) is involved in neurodevelopment and synaptic plasticity. Extracellular matrix structures called perineuronal nets, condensed around subsets of neurons and proximal dendrites during brain maturation, regulate synaptic transmission and plasticity.
Ten genes of importance for HNK-1 biosynthesis (B3GAT1, B3GAT2, and CHST10) or for the formation of perineuronal nets (TNR, BCAN, NCAN, HAPLN1, HAPLN2, HAPLN3, and HAPLN4) were investigated for potential involvement in schizophrenia (SCZ) susceptibility, by genotyping 104 tagSNPs in the Scandinavian Collaboration on Psychiatric Etiology sample (849 cases; 1602 control subjects). Genome-wide association study imputation data from the European SGENE-plus sample (2663 cases; 13,498 control subjects) were used for comparison. The effect of SCZ risk alleles on brain structure was investigated in a Norwegian subset (98 cases; 177 control subjects) with structural magnetic resonance imaging data.
Five single nucleotide polymorphisms (SNPs), located in two adjacent estimated linkage disequilibrium blocks in the first intron of ?-1,3-glucuronyltransferase 2 (B3GAT2), were nominally associated with SCZ (.004 ? P(empirical) ? .05). The rs2460691 was significantly associated in the comparison sample and in the meta-analysis after correction for all 121 SNP/haplotype tests (P(raw) = 1 × 10(-4); P(corrected) = .018). Increased dosage of the rs2460691 SCZ risk allele was associated with decreased cortical area (p = .002) but not thickness or hippocampal volume. A second SNP (r(2) = .24 with rs10945275), which conferred the highest SCZ risk effect in the Norwegian subset, was also associated with cortical area.
The present results suggest that effects on biosynthesis of the neuronal epitope HNK-1, through common B3GAT2 variation, could increase the risk of SCZ, possibly by decreasing cortical area.
SCZ Keywordsschizophrenia
2Neurosci Biobehav Rev 2012 Jan 36: 556-71
PMID21946175
TitleGenome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt?
Abstractschizophrenia (SZ) and bipolar disorder (BPD) have high heritabilities and are clinically and genetically complex. Genome wide association studies (GWAS) and studies of copy number variations (CNV) in SZ and BPD have allowed probing of their underlying genetic risks. In this systematic review, we assess extant genetic signals from published GWAS and CNV studies of SZ and BPD up till March 2011. Risk genes associated with SZ at genome wide significance level (p value<7.2 × 10(-8)) include zinc finger binding protein 804A (ZNF804A), major histocompatibility (MHC) region on chromosome 6, neurogranin (NRGN) and transcription factor 4 (TCF4). Risk genes associated with BPD include ankyrin 3, node of Ranvier (ANK3), calcium channel, voltage dependent, L type, alpha 1C subunit (CACNA1C), diacylglycerol kinase eta (DGKH), gene locus on chromosome 16p12, and polybromo-1 (PBRM1) and very recently neurocan gene (NCAN). Possible common genes underlying psychosis include ZNF804A, CACNA1C, NRGN and PBRM1. The CNV studies suggest that whilst CNVs are found in both SZ and BPD, the large deletions and duplications are more likely found in SZ rather than BPD. The validation of any genetic signal is likely confounded by genetic and phenotypic heterogeneities which are influenced by epistatic, epigenetic and gene-environment interactions. There is a pressing need to better integrate the multiple research platforms including systems biology computational models, genomics, cross disorder phenotyping studies, transcriptomics, proteomics, metabolomics, neuroimaging and clinical correlations in order to get us closer to a more enlightened understanding of the genetic and biological basis underlying these potentially crippling conditions.
SCZ Keywordsschizophrenia
3Schizophr. Res. 2012 Jun 138: 69-73
PMID22497794
TitleAssociation between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder.
AbstractA recent study found genome-wide significant association between common variation in the gene neurocan (NCAN, rs1064395) and bipolar disorder (BD). In view of accumulating evidence that BD and schizophrenia partly share genetic risk factors, we tested this single-nucleotide polymorphism for association with schizophrenia in three independent patient-control samples of European ancestry, totaling 5061 patients and 9655 controls. The rs1064395 A-allele, which confers risk for BD, was significantly over-represented in schizophrenia patients compared to controls (p=2.28×10(-3); odds ratio=1.11). Follow-up in non-overlapping samples from the schizophrenia Psychiatric GWAS Consortium (5537 patients, 8043 controls) provided further support for our finding (p=0.0239, odds ratio=1.07). Our data suggest that genetic variation in NCAN is a common risk factor for BD and schizophrenia.
SCZ Keywordsschizophrenia
4Bosn J Basic Med Sci 2012 Nov 12: 245-8
PMID23198940
TitleAssessment of relatedness between neurocan gene as bipolar disorder susceptibility locus and schizophrenia.
AbstractLarge scale genetic association meta-analyses showed that neurocan (NCAN) gene polymorphism rs1064395 is susceptibility locus for bipolar disorder. These studies also included patients with bipolar disorder originated from Bosnia and Herzegovina. Followed by theory of shared genetic elements between bipolar disorder and schizophrenia susceptibility, other studies explored several genetic factors with schizophrenia vulnerability as well. In this work, authors investigated the association between previously confirmed bipolar disorder genetic risk factor- neurocan with schizophrenia in a population sample of Bosnia and Herzegovina. Ethical aspects of this research were assessed by Ethics Committee of Clinical Center University of Sarajevo. Blood samples for DNA extraction were taken from the total of 86 patients and healthy individuals who previously signed informed consent. Genotyping for rs 1064395 was done using direct sequencing method. A case-control analysis of common genetic polymorphism within neurocan gene and schizophrenia status in a consecutively sampled patient cohort have been done using Fisher-exact test with odds-ratio calculation. No statistically significant allele and genotype association with disease status was found (p>0.05). Our finding supports the fact that large-scale genetic association studies approach need to be employed when detecting the variants with small additive effect in phenotypes with complex ethiology.
SCZ Keywordsschizophrenia
5Am J Psychiatry 2012 Sep 169: 982-90
PMID22952076
TitleStudies in humans and mice implicate neurocan in the etiology of mania.
AbstractGenome-wide association has been reported between the NCAN gene and bipolar disorder. The aims of this study were to characterize the clinical symptomatology most strongly influenced by NCAN and to explore the behavioral phenotype of NCAN knockout (NCAN(-/-)) mice.
Genotype/phenotype correlations were investigated in patients with bipolar disorder (N=641) and the genetically related disorders major depression (N=597) and schizophrenia (N=480). Principal components and genotype association analyses were used to derive main clinical factors from 69 lifetime symptoms and to determine which of these factors were associated with the NCAN risk allele. These analyses were then repeated using the associated factor(s) only in order to identify the more specific clinical subdimensions that drive the association. NCAN(-/-) mice were tested using diverse paradigms, assessing a range of behavioral traits, including paradigms corresponding to bipolar symptoms in humans.
In the combined patient sample, the NCAN risk allele was significantly associated with the "mania" factor, in particular the subdimension "overactivity." NCAN(-/-) mice were hyperactive and showed more frequent risk-taking and repetitive behaviors, less depression-like conduct, impaired prepulse inhibition, amphetamine hypersensitivity, and increased saccharin preference. These aberrant behavioral responses normalized after the administration of lithium.
NCAN preferentially affected mania symptoms in humans. NCAN(-/-) mice showed behavioral abnormalities that were strikingly similar to those of the human mania phenotype and may thus serve as a valid mouse model.
SCZ Keywordsschizophrenia
6Lancet 2013 May 381: 1654-62
PMID23663951
TitleGenetics of bipolar disorder.
AbstractStudies of families and twins show the importance of genetic factors affecting susceptibility to bipolar disorder and suggest substantial genetic and phenotypic complexity. Robust and replicable genome-wide significant associations have recently been reported in genome-wide association studies at several common polymorphisms, including variants within the genes CACNA1C, ODZ4, and NCAN. Strong evidence exists for a polygenic contribution to risk (ie, many risk alleles of small effect). A notable finding is the overlap of susceptibility between bipolar disorder and schizophrenia for several individual risk alleles and for the polygenic risk. By contrast, genomic structural variation seems to play a smaller part in bipolar disorder than it does in schizophrenia. Together, these genetic findings suggest directions for future studies to delineate the aetiology and pathogenesis of bipolar disorder, indicate the need to re-evaluate our diagnostic classifications, and might eventually pave the way for major improvements in clinical management.
SCZ Keywordsschizophrenia
7Psychol Med 2014 Mar 44: 811-20
PMID23795679
TitleCommon variation in NCAN, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia.
AbstractRecent studies have provided strong evidence that variation in the gene neurocan (NCAN, rs1064395) is a common risk factor for bipolar disorder (BD) and schizophrenia. However, the possible relevance of NCAN variation to disease mechanisms in the human brain has not yet been explored. Thus, to identify a putative pathomechanism, we tested whether the risk allele has an influence on cortical thickness and folding in a well-characterized sample of patients with schizophrenia and healthy controls.
Sixty-three patients and 65 controls underwent T1-weighted magnetic resonance imaging (MRI) and were genotyped for the single nucleotide polymorphism (SNP) rs1064395. Folding and thickness were analysed on a node-by-node basis using a surface-based approach (FreeSurfer).
In patients, NCAN risk status (defined by AA and AG carriers) was found to be associated with higher folding in the right lateral occipital region and at a trend level for the left dorsolateral prefrontal cortex. Controls did not show any association (p > 0.05). For cortical thickness, there was no significant effect in either patients or controls.
This study is the first to describe an effect of the NCAN risk variant on brain structure. Our data show that the NCAN risk allele influences cortical folding in the occipital and prefrontal cortex, which may establish disease susceptibility during neurodevelopment. The findings suggest that NCAN is involved in visual processing and top-down cognitive functioning. Both major cognitive processes are known to be disturbed in schizophrenia. Moreover, our study reveals new evidence for a specific genetic influence on local cortical folding in schizophrenia.
SCZ Keywordsschizophrenia
8Psychol Med 2015 -1 45: 2461-80
PMID25858580
TitleWhat is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review.
AbstractThe powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.
SCZ Keywordsschizophrenia
9Neuropsychopharmacology 2015 Oct 40: 2510-6
PMID25801500
TitleNCAN Cross-Disorder Risk Variant Is Associated With Limbic Gray Matter Deficits in Healthy Subjects and Major Depression.
AbstractGenome-wide association studies have reported an association between NCAN rs1064395 genotype and bipolar disorder. This association was later extended to schizophrenia and major depression. However, the neurobiological underpinnings of these associations are poorly understood. NCAN is implicated in neuronal plasticity and expressed in subcortical brain areas, such as the amygdala and hippocampus, which are critically involved in dysfunctional emotion processing and regulation across diagnostic boundaries. We hypothesized that the NCAN risk variant is associated with reduced gray matter volumes in these areas. Gray matter structure was assessed by voxel-based morphometry on structural MRI data in two independent German samples (healthy subjects, n=512; depressed inpatients, n=171). All participants were genotyped for NCAN rs1064395. Hippocampal and amygdala region-of-interest analyses were performed within each sample. In addition, whole-brain data from the combined sample were analyzed. Risk (A)-allele carriers showed reduced amygdala and hippocampal gray matter volumes in both cohorts with a remarkable spatial overlap. In the combined sample, genotype effects observed for the amygdala and hippocampus survived correction for entire brain volume. Further effects were also observed in the left orbitofrontal cortex and the cerebellum/fusiform gyrus. We conclude that NCAN genotype is associated with limbic gray matter alterations in healthy and depressed subjects in brain areas implicated in emotion perception and regulation. The present data suggest that NCAN forms susceptibility to neurostructural deficits in the amygdala, hippocampus, and prefrontal areas independent of disease, which might lead to disorder onset in the presence of other genetic or environmental risk factors.
SCZ Keywordsschizophrenia
10Hum Brain Mapp 2015 Jan 36: 378-90
PMID25220293
TitleA genome-wide supported psychiatric risk variant in NCAN influences brain function and cognitive performance in healthy subjects.
AbstractThe A allele of the single nucleotide polymorphism (SNP) rs1064395 in the NCAN gene has recently been identified as a susceptibility factor for bipolar disorder and schizophrenia. NCAN encodes neurocan, a brain-specific chondroitin sulfate proteoglycan that is thought to influence neuronal adhesion and migration. Several lines of research suggest an impact of NCAN on neurocognitive functioning. In the present study, we investigated the effects of rs1064395 genotype on neural processing and cognitive performance in healthy subjects. Brain activity was measured with functional magnetic resonance imaging (fMRI) during an overt semantic verbal fluency task in 110 healthy subjects who were genotyped for the NCAN SNP rs1064395. Participants additionally underwent comprehensive neuropsychological testing. Whole brain analyses revealed that NCAN risk status, defined as AA or AG genotype, was associated with a lack of task-related deactivation in a large left lateral temporal cluster extending from the middle temporal gyrus to the temporal pole. Regarding neuropsychological measures, risk allele carriers demonstrated poorer immediate and delayed verbal memory performance when compared to subjects with GG genotype. Better verbal memory performance was significantly associated with greater deactivation of the left temporal cluster during the fMRI task in subjects with GG genotype. The current data demonstrate that common genetic variation in NCAN influences both neural processing and cognitive performance in healthy subjects. Our study provides new evidence for a specific genetic influence on human brain function.
SCZ Keywordsschizophrenia