1Mol. Psychiatry 2005 Jun 10: 606-12
PMID15534618
TitleNetrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine.
AbstractNetrins are guidance cues that play a fundamental role in organizing the developing brain. The netrin receptor, DCC (deleted in colorectal cancer), is highly expressed by dopaminergic (DA) neurons. DCC may therefore participate in the organization of DA circuitry during development and also influence DA function in the adult. Here we show that adult DCC heterozygous mice exhibit a blunted behavioral response to the indirect DA agonist amphetamine and do not develop sensitization to its effects when treated repeatedly. These behavioral alterations are associated with profound changes in DA function. In the medial prefrontal cortex, DCC heterozygotes exhibit increased tyrosine hydroxylase (TH) protein levels and dramatic increases in basal concentrations of DA and DA metabolites. In contrast, in the nucleus accumbens, DCC heterozygotes show no changes in either TH or DA levels, but exhibit decreased concentrations of DA metabolites, suggesting reduced DA activity. In addition, DCC heterozygous mice exhibit a small, but significant reduction in total number of TH-positive neurons in midbrain DA cell body regions. These results demonstrate for the first time that alterations in DCC expression lead to selective changes in DA function and, in turn, to differences in DA-related behaviors in adulthood. These findings raise the possibility that changes in DCC function early in life are implicated in the development of DA dysregulation observed in certain psychiatric disorders, such as schizophrenia, or following chronic use of drugs of abuse.
SCZ Keywordsschizophrenia, schizophrenic
2Eur. J. Neurosci. 2007 Dec 26: 3215-28
PMID18005074
TitleNetrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine.
AbstractThe mesocorticolimbic dopamine (DA) system is implicated in neurodevelopmental psychiatric disorders including schizophrenia but it is unknown how disruptions in brain development modify this system and increase predisposition to cognitive and behavioural abnormalities in adulthood. Netrins are guidance cues involved in the proper organization of neuronal connectivity during development. We have hypothesized that variations in the function of DCC (deleted in colorectal cancer), a netrin-1 receptor highly expressed by DA neurones, may result in altered development and organization of mesocorticolimbic DA circuitry, and influence DA function in the adult. To test this hypothesis, we assessed the effects of reduced DCC on several indicators of DA function. Using in-vivo microdialysis, we showed that adult mice that develop with reduced DCC display increased basal DA levels in the medial prefrontal cortex and exaggerated DA release in response to the indirect DA agonist amphetamine. In contrast, these mice exhibit normal levels of DA in the nucleus accumbens but significantly blunted amphetamine-induced DA release. Concomitantly, using conditioned place preference, locomotor activity and prepulse inhibition paradigms, we found that reduced DCC diminishes the rewarding and behavioural-activating effects of amphetamine and protects against amphetamine-induced deficits in sensorimotor gating. Furthermore, we found that adult DCC-deficient mice exhibit altered dendritic spine density in layer V medial prefrontal cortex pyramidal neurones but not in nucleus accumbens medium spiny neurones. These findings demonstrate that reduced DCC during development results in a behavioural phenotype opposite to that observed in developmental models of schizophrenia and identify DCC as a critical factor in the development of DA function.
SCZ Keywordsschizophrenia, schizophrenic
3Eur. J. Neurosci. 2009 Oct 30: 1318-28
PMID19788579
TitlePost-pubertal emergence of a dopamine phenotype in netrin-1 receptor-deficient mice.
AbstractDuring the pubertal period the mesocortical dopamine (DA) system undergoes substantial reorganization of neuronal connectivity and functional refinement. Netrins are guidance cues involved in the organization of neuronal circuitry. We have previously shown that adult mice that develop with reduced levels of the netrin-1 receptor [deleted in colorectal cancer (DCC)] display selective reorganization of mesocortical DA circuitry, show enhanced mesocortical DA function and exhibit a behavioural phenotype opposite to that observed in animal models of schizophrenia. Here we assess whether the DCC behavioural and DA phenotypes are present prior to the maturation of the mesocortical DA system by comparing DCC-heterozygous and wild-type mice at the post-weaning and peri-pubertal periods on various indices of DA function. At both the post-weaning and peri-pubertal ages, but unlike in adulthood, DCC-heterozygous and wild-type mice show no differences in the number of midbrain DA neurones or in tyrosine hydroxylase protein levels in the medial prefrontal cortex. Furthermore, the elevated baseline concentration of mesocortical DA and DA metabolites observed in adult DCC-heterozygous mice is not present in either post-weanling or peri-pubertal mice. Interestingly, post-weanling, but not peri-pubertal, DCC-heterozygous mice show greater baseline concentrations of DA metabolites in the nucleus accumbens, opposite to what was observed in adulthood. Finally, neither post-weanling nor peri-pubertal DCC-heterozygous mice demonstrate the blunted amphetamine-induced locomotor response observed in adulthood. Thus, these findings show that the 'protective' DCC phenotype has a post-pubertal emergence and indicate that DCC may play a role in the normal maturation of the mesocorticolimbic DA system.
SCZ Keywordsschizophrenia, schizophrenic
4Synapse 2009 Jan 63: 54-60
PMID18932228
TitleAltered netrin-1 receptor expression in dopamine terminal regions following neonatal ventral hippocampal lesions in the rat.
AbstractNeonatal ventral hippocampal (nVH) lesions in rats, which model certain features of schizophrenia, alter dopamine (DA)-mediated behaviors in adulthood. The precise mechanisms underlying these effects remain elusive; however, neuronal reorganization within the medial prefrontal cortex (mPFC) has been suggested. Netrins are developmental cues that organize brain wiring, including the mesocorticolimbic DA circuitry. We showed recently that the netrin-1 receptors DCC and UNC5H are highly expressed by DA neurons and that variation in DCC levels during development lead to profound changes in mesocorticolimbic DA function and behavior in adulthood. We hypothesized that changes in netrin-1 receptor function could be one of the mechanisms producing enduring changes in DA function in nVH-lesioned animals. To begin to explore this idea, we examined the effects of nVH lesions on DCC and UNC5H expression in brain regions receiving robust DA innervation; the mPFC, striatum, and nucleus accumbens (NAcc) at three developmental time points; 3 days after lesion, before puberty and during early adulthood. Expression was also examined in the cerebellar simple lobule; a brain region deprived of DA innervation. Neonatal VH lesions produced dynamic changes in DCC expression in the mPFC and NAcc. The direction and magnitude of these changes depended on the developmental age and brain region examined and were specific to regions receiving DA innervation. Although further studies are required to understand the functional significance of these changes, these results raise the interesting possibility that nVH lesions, and perinatal insults in general, may exert their neuronal reorganizational effects by modulating netrin-1 function.
SCZ Keywordsschizophrenia, schizophrenic
5Schizophr. Res. 2012 May 137: 26-31
PMID22418395
TitleAssociation between schizophrenia and genetic variation in DCC: a case-control study.
Abstractschizophrenia is a highly heritable neurodevelopmental disorder associated with alterations in synaptic connectivity. Deleted in colorectal cancer (DCC), a receptor for the guidance cue netrin-1, plays a pivotal role in organizing neuronal circuitry by guiding growing axons and dendrites to their correct targets and by influencing synaptic connectivity. Results from experiments we previously conducted in DCC-heterozygous mice show that DCC plays a critical role in the developmental organization of the mesocorticolimbic dopamine (DA) circuitry. Furthermore we have shown that reduced expression of DCC during development and/or throughout life confers resilience to the development of schizophrenia-like DA and behavioural abnormalities. Importantly, this "protective" phenotype only emerges after puberty. Here we assess whether DCC may contribute to the risk of schizophrenia. We examined single nucleotide polymorphisms (SNPs) located in the DCC gene for association with schizophrenia using a case-control sample consisting of 556 unrelated schizophrenic patients and 208 healthy controls. We found one SNP, rs2270954, to be nominally associated with schizophrenia; patients were less likely to be heterozygous at this locus and more likely to be homozygous for the minor allele (?(2)=9.84, df=2, nominal p=0.0071). Intriguingly, this SNP is located within the 3' untranslated region, an area known to contain a number of regulatory sequences that determine the stability and translation efficacy of mRNA. These results, together with our previous findings from studies in rodents, point at DCC as a promising novel candidate gene that may contribute to the genetic basis behind individual differences in susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
6Schizophr. Res. 2012 May 137: 26-31
PMID22418395
TitleAssociation between schizophrenia and genetic variation in DCC: a case-control study.
Abstractschizophrenia is a highly heritable neurodevelopmental disorder associated with alterations in synaptic connectivity. Deleted in colorectal cancer (DCC), a receptor for the guidance cue netrin-1, plays a pivotal role in organizing neuronal circuitry by guiding growing axons and dendrites to their correct targets and by influencing synaptic connectivity. Results from experiments we previously conducted in DCC-heterozygous mice show that DCC plays a critical role in the developmental organization of the mesocorticolimbic dopamine (DA) circuitry. Furthermore we have shown that reduced expression of DCC during development and/or throughout life confers resilience to the development of schizophrenia-like DA and behavioural abnormalities. Importantly, this "protective" phenotype only emerges after puberty. Here we assess whether DCC may contribute to the risk of schizophrenia. We examined single nucleotide polymorphisms (SNPs) located in the DCC gene for association with schizophrenia using a case-control sample consisting of 556 unrelated schizophrenic patients and 208 healthy controls. We found one SNP, rs2270954, to be nominally associated with schizophrenia; patients were less likely to be heterozygous at this locus and more likely to be homozygous for the minor allele (?(2)=9.84, df=2, nominal p=0.0071). Intriguingly, this SNP is located within the 3' untranslated region, an area known to contain a number of regulatory sequences that determine the stability and translation efficacy of mRNA. These results, together with our previous findings from studies in rodents, point at DCC as a promising novel candidate gene that may contribute to the genetic basis behind individual differences in susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
7Immunopharmacol Immunotoxicol 2013 Oct 35: 581-93
PMID23981041
TitlePrenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation.
AbstractActivation of the immune system during pregnancy is believed to lead to psychiatric and neurological disorders in the offspring, but the molecular changes responsible are unknown. Polyinosinic:polycytidylic acid (poly(I:C)) is a viral-mimetic double-stranded RNA complex which activates Toll-Like-Receptor-3 and can activate the metabolism of tryptophan through the oxidative kynurenine pathway to compounds that modulate activity of glutamate receptors. The aim was to determine whether prenatal administration of poly(I:C) affects the expression of neurodevelopmental proteins in the offspring and whether such effects were mediated via the kynurenine pathway. Pregnant rats were treated with poly(I:C) during late gestation and the offspring were allowed to develop to postnatal day 21 (P21). Immunoblotting of the brains at P21 showed decreased expression of sonic hedgehog, a key protein in dopaminergic neuronal maturation. Expression of ?-synuclein was decreased, while tyrosine hydroxylase was increased. Disrupted in schizophrenia-1 (DISC-1) and 5-HT2C receptor levels were unaffected, as were the dependence receptors Unc5H1, Unc5H3 and Deleted in Colorectal Cancer (DCC), the inflammation-related transcription factor NFkB and the inducible oxidative enzyme cyclo-oxygenase-2 (COX-2). An examination of embryo brains 5?h after maternal poly(I:C) showed increased expression of GluN2B, with reduced doublecortin and DCC but no change in NFkB. Despite altered protein expression, there were no changes in the kynurenine pathway. The results show that maternal exposure to poly(I:C) alters the expression of proteins in the embryos and offspring which may affect the development of dopaminergic function. The oxidation of tryptophan along the kynurenine pathway is not involved in these effects.
SCZ Keywordsschizophrenia, schizophrenic
8Eur. J. Neurosci. 2013 Sep 38: 2853-63
PMID23738838
Titleunc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model.
AbstractDCC and UNC5 homologs (UNC5H) are guidance cue receptors highly expressed by mesocorticolimbic dopamine neurons. We have shown that DCC heterozygous mice exhibit increased dopamine, but not norepinephrine, innervation and function in medial prefrontal cortex. Concomitantly, DCC heterozygotes show blunted mesolimbic dopamine release and behavioral responses to stimulant drugs. These changes appear only in adulthood. Recently, we found an adolescent emergence of UNC5H expression by dopamine neurons and co-expression of DCC and UNC5H by single dopamine cells. Here, we demonstrate selective expression of unc5 homolog c mRNA by dopamine neurons in adulthood. We show that unc5c haploinsufficiency results in diminished amphetamine-induced locomotion in male and female mice. This phenotype is identical to that produced by DCC haploinsufficiency and is observed after adolescence. Notably, and similar to DCC haploinsufficiency, unc5c haploinsufficiency leads to dramatic increases in tyrosine hydroxylase expression in the medial prefrontal cortex, but not in the nucleus accumbens. In contrast, medial prefrontal cortex dopamine-?-hydroxylase expression is not altered. We confirmed that UNC5C protein is reduced in the ventral tegmental area of unc5c heterozygous mice, but that DCC expression in this region remains unchanged. UNC5C receptors may also play a role in dopamine function and influence sensitivity to behavioral effects of stimulant drugs of abuse, at least upon first exposure. The striking similarities between the DCC and the unc5c haploinsufficient phenotypes raise the possibility that functions mediated by DCC/UNC5C complexes may be at play.
SCZ Keywordsschizophrenia, schizophrenic
9Neurosci. Lett. 2014 Jul 575: 58-62
PMID24861518
TitleHaloperidol treatment downregulates DCC expression in the ventral tegmental area.
AbstractA core feature in the pathophysiology of schizophrenia is abnormal development and function of mesocorticolimbic dopamine (DA) circuitry. We have previously shown that variations in the function of the netrin-1 receptor, deleted in colorectal cancer (DCC), result in changes to the development, organization and ongoing plasticity of DA circuitry. In rodents, repeated exposure to the indirect DA-agonist, amphetamine upregulates DCC expression in the ventral tegmental area (VTA), but not in DA terminal regions. This elevation in DCC expression is associated with increased vulnerability to developing and maintaining sensitized mesolimbic DA function. Antipsychotic medications remain the best treatment option for managing the symptoms in schizophrenia. The peak effects of these medications are gradual, suggesting that a therapeutic component of antipsychotic treatment involves structural reorganization. Here we assessed whether repeated exposure to typical and atypical antipsychotics could also regulate DCC. Adult mice were orally administered haloperidol, clozapine, or risperidone via their drinking water for 4 weeks. Levels of DCC were measured by Western blot analysis of tissue punches of the VTA, medial prefrontal cortex, nucleus accumbens, and dorsal striatum. Haloperidol decreased DCC levels by approximately 50% in the VTA, but not in DA targets. Furthermore, haloperidol did not alter UNC-5 homologue levels, another family of netrin-1 receptors, confirming that its effects target DCC-mediated netrin-1 signaling specifically. The atypical antipsychotics did not alter DCC expression. These results suggest that typical antipsychotics induce selective functional reorganization in the VTA via DCC-mediated netrin-1 signaling.
SCZ Keywordsschizophrenia, schizophrenic
10J. Mol. Neurosci. 2016 Apr -1: -1
PMID27055860
TitleAn Association Study Between Genetic Polymorphisms in Functional Regions of Five Genes and the Risk of Schizophrenia.
Abstractschizophrenia is a severe mental disorder that is likely to be strongly determined by genetic factors. To identify markers of disks, large homolog 2 (DLG2), FAT atypical cadherin 3 (FAT3), kinectin1 (KTN1), deleted in colorectal carcinoma (DCC), and glycogen synthase kinase-3? (GSK3?) that contribute to the genetic susceptibility to schizophrenia, we systematically screened for polymorphisms in the functional regions of these genes. A total of 22 functional single-nucleotide polymorphisms (SNPs) in 940 Chinese subjects were genotyped using SNaPshot. The results first suggested that the allelic and genotypic frequencies of the DCC polymorphism rs2229080 were nominally associated with schizophrenia. The patients were significantly less likely to be CC homozygous (P = 0.005, odds ratio [OR] = 0.635, 95 % confidence interval [95 % CI] = 0.462-0.873), and the schizophrenia subjects exhibited lower frequency of the C allele (P = 0.024, OR = 0.811, 95 % CI = 0.676-0.972). Regarding GSK3?, there was a significant difference in genotype distribution of rs3755557 between schizophrenia and healthy control subjects (P = 0.009). The patients exhibited a significantly lower frequency of the T allele of rs3755557 (P = 0.002, OR = 0.654, 95 % CI = 0.498-0.860). Our results point to the polymorphisms of DCC and GSK3? as contributors to the genetic basis of individual differences in the susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic