1PLoS ONE 2007 -1 2: e895
PMID17878930
TitleDNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.
AbstractThe role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3A de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.
SCZ Keywordsschizophrenia, schizophrenic
2Mol. Pharmacol. 2009 Feb 75: 342-54
PMID19029285
TitleThe reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes.
AbstractThe epigenetic down-regulation of genes is emerging as a possible underlying mechanism of the GABAergic neuron dysfunction in schizophrenia. For example, evidence has been presented to show that the promoters associated with reelin and GAD67 are down-regulated as a consequence of DNA methyltransferase (DNMT)-mediated hypermethylation. Using neuronal progenitor cells to study this regulation, we have previously demonstrated that DNMT inhibitors coordinately increase reelin and GAD67 mRNAs. Here, we report that another group of epigenetic drugs, histone deacetylase (HDAC) inhibitors, activate these two genes with dose and time dependence comparable with that of DNMT inhibitors. In parallel, both groups of drugs decrease DNMT1, DNMT3A, and DNMT3B protein levels and reduce DNMT enzyme activity. Furthermore, induction of the reelin and GAD67 mRNAs is accompanied by the dissociation of repressor complexes containing all three DNMTs, MeCP2, and HDAC1 from the corresponding promoters and by increased local histone acetylation. Our data imply that drug-induced promoter demethylation is relevant for maximal activation of reelin and GAD67 transcription. The results suggest that HDAC and DNMT inhibitors activate reelin and GAD67 expression through similar mechanisms. Both classes of drugs attenuate, directly or indirectly, the enzymatic and transcriptional repressor activities of DNMTs and HDACs. These data provide a mechanistic rationale for the use of epigenetic drugs, individually or in combination, as a potential novel therapeutic strategy to alleviate deficits associated with schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Eur Neuropsychopharmacol 2012 Aug 22: 596-606
PMID22264868
TitleCharacterization of the neuropsychological phenotype of glycine N-methyltransferase-/- mice and evaluation of its responses to clozapine and sarcosine treatments.
AbstractGlycine N-methyltransferase (GNMT) affects cellular methylation capacity through regulating the ratio between S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). The product of its enzymatic reaction-sarcosine has antipsychotic effect in patients with schizophrenia. In this study, through RT-PCR and immunohistochemical staining, we demonstrated that GNMT expressed in various neurons located in the cerebral cortex, hippocampus, substantia nigra and cerebellum. Compared to the wild-type mice, Gnmt-/- mice had significantly lower level of sarcosine in the cerebral cortex. Real-time PCR identified genes involved in the methionine metabolism (Dnmt1 and DNMT3A), ErbB (Nrg1 and ErbB4) and mTOR (Akt2, S6, S6k1 and S6k2) signaling pathways were dysregulated significantly in the cortex of Gnmt-/- mice. Acoustic startle reflex test demonstrated that Gnmt-/- mice had significantly lower level of prepulse inhibition and the deficit was ameliorated through clozapine or sarcosine treatment. Furthermore, liver-specific-human-GNMT transgenic with Gnmt-/- (Tg-GNMT/Gnmt-/-) mice were used to rule out that the phenotype was due to abnormal liver function. In summary, the neuropsychological abnormalities found in Gnmt-/- mice may represent an endophenotype of schizophrenia. GNMT plays an important role in maintaining normal physiological function of brain and Tg-GNMT/Gnmt-/- mice are useful models for development of therapeutics for patients with schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
4Proc. Natl. Acad. Sci. U.S.A. 2012 Feb 109: 3125-30
PMID22315408
TitleMicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function.
Abstractschizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element binding- and NMDA-regulated microRNA miR-132 was significantly down-regulated in both the schizophrenic discovery cohort and a second, independent set of schizophrenic subjects. Analysis of miR-132 target gene expression in schizophrenia gene-expression microarrays identified 26 genes up-regulated in schizophrenia subjects. Consistent with NMDA-mediated hypofunction observed in schizophrenic subjects, administration of an NMDA antagonist to adult mice results in miR-132 down-regulation in the prefrontal cortex. Furthermore, miR-132 expression in the murine prefrontal cortex exhibits significant developmental regulation and overlaps with critical neurodevelopmental processes during adolescence. Adult prefrontal expression of miR-132 can be down-regulated by pharmacologic inhibition of NMDA receptor signaling during a brief postnatal period. Several key genes, including DNMT3A, GATA2, and DPYSL3, are regulated by miR-132 and exhibited altered expression either during normal neurodevelopment or in tissue from adult schizophrenic subjects. Our data suggest miR-132 dysregulation and subsequent abnormal expression of miR-132 target genes contribute to the neurodevelopmental and neuromorphological pathologies present in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
5Proc. Natl. Acad. Sci. U.S.A. 2012 Feb 109: 3125-30
PMID22315408
TitleMicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function.
Abstractschizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element binding- and NMDA-regulated microRNA miR-132 was significantly down-regulated in both the schizophrenic discovery cohort and a second, independent set of schizophrenic subjects. Analysis of miR-132 target gene expression in schizophrenia gene-expression microarrays identified 26 genes up-regulated in schizophrenia subjects. Consistent with NMDA-mediated hypofunction observed in schizophrenic subjects, administration of an NMDA antagonist to adult mice results in miR-132 down-regulation in the prefrontal cortex. Furthermore, miR-132 expression in the murine prefrontal cortex exhibits significant developmental regulation and overlaps with critical neurodevelopmental processes during adolescence. Adult prefrontal expression of miR-132 can be down-regulated by pharmacologic inhibition of NMDA receptor signaling during a brief postnatal period. Several key genes, including DNMT3A, GATA2, and DPYSL3, are regulated by miR-132 and exhibited altered expression either during normal neurodevelopment or in tissue from adult schizophrenic subjects. Our data suggest miR-132 dysregulation and subsequent abnormal expression of miR-132 target genes contribute to the neurodevelopmental and neuromorphological pathologies present in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
6PLoS ONE 2014 -1 9: e98182
PMID24859147
TitleDNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia.
AbstractDNA methylation has been implicated in the etiopathology of various complex disorders. DNA methyltransferases are involved in maintaining and establishing new methylation patterns. The aim of the present study was to investigate the inherent genetic variations within DNA methyltransferase genes in predisposing to susceptibility to schizophrenia. We screened for polymorphisms in DNA methyltransferases, DNMT1, DNMT3A, DNMT3B and DNMT3L in 330 schizophrenia patients and 302 healthy controls for association with schizophrenia in south Indian population. These polymorphisms were also tested for subgroup analysis with patient's gender, age of onset and family history. DNMT1 rs2114724 (genotype P?=?.004, allele P?=?0.022) and rs2228611 (genotype P?=?0.004, allele P?=?0.022) were found to be significantly associated at genotypic and allelic level with schizophrenia in South Indian population. DNMT3B rs2424932 genotype (P?=?0.023) and allele (P?=?0.0063) increased the risk of developing schizophrenia in males but not in females. DNMT3B rs1569686 (genotype P?=?0.027, allele P?=?0.033) was found to be associated with early onset of schizophrenia and also with family history and early onset (genotype P?=?0.009). DNMT3L rs2070565 (genotype P?=?0.007, allele P?=?0.0026) confers an increased risk of developing schizophrenia at an early age in individuals with family history. In-silico prediction indicated functional relevance of these SNPs in regulating the gene. These observations might be crucial in addressing and understanding the genetic control of methylation level differences from ethnic viewpoint. Functional significance of genotype variations within the DNMTs indeed suggest that the genetic nature of methyltransferases should be considered while addressing epigenetic events mediated by methylation in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
7Behav. Brain Res. 2016 Mar 300: 123-34
PMID26704217
TitlePossible contribution of epigenetic changes in the development of schizophrenia-like behavior in vasopressin-deficient Brattleboro rats.
Abstractschizophrenia-like symptoms were detected in vasopressin-deficient (di/di) Brattleboro rats, and it was also suggested that schizophrenia might have an epigenetic component. We aimed to clarify if epigenetic changes contribute to schizophrenia-like behavior of this strain. Behavioral (locomotion by telemetry, cognition by novel object recognition, social recognition and social avoidance test, attention by pre-pulse inhibition) and epigenetic differences were compared between wild type and di/di animals. DNA methyltransferase1 (DNMT1), DNMT3A, as well as COMT, GAD, VGLUT1, 5HT2A, BDNF mRNA levels in prefrontal brain region and hippocampus were studied by qRT-PCR. Histone3 (H3) and H4 acetylation (Ac) were studied by western-blot followed by region specific examination of H3 lysine9 (K9) acetylation by immunohistochemistry. Impaired cognitive, social and attention behavior of di/di rats confirmed schizophrenia-like symptoms in our local colony. The pan-AcH3 immunoreactivity was lower in prefrontal region and elevated in the hippocampus of di/di animals. We found lower immunopositive cell number in the dorsal peduncular prefrontal cortex and the ventral lateral septum and increased AcH3K9 immunoreactivity in CA1 region of di/di animals. There were no major significant alterations in the studied mRNA levels. We confirmed that Brattleboro rat is a good preclinical model of schizophrenia. Its schizophrenia-like behavioral alteration was accompanied by changes in H3 acetylation in the prefrontal region and hippocampus. This may contribute to disturbances of many schizophrenia-related substances leading to development of schizophrenia-like symptoms. Our studies confirmed that not a single gene, rather fine changes in an array of molecules are responsible for the majority of schizophrenia cases.
SCZ Keywordsschizophrenia, schizophrenic