1Ther Adv Neurol Disord 2008 Nov 1: 193-206
PMID21180577
TitleRecombinant Human Erythropoietin: Novel Strategies for Neuroprotective/Neuro-regenerative Treatment of Multiple Sclerosis.
AbstractTreatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment.
SCZ Keywordsschizophrenia, schizophrenic
2Neurotherapeutics 2009 Jan 6: 108-27
PMID19110203
TitleTherapeutic potential of erythropoietin and its structural or functional variants in the nervous system.
AbstractThe growth factor erythropoietin (EPO) and erythropoietin receptors (EPOR) are expressed in the nervous system. Neuronal expression of EPO and EPOR peaks during brain development and is upregulated in the adult brain after injury. Peripherally administered EPO, and at least some of its variants, cross the blood-brain barrier, stimulate neurogenesis, neuronal differentiation, and activate brain neurotrophic, anti-apoptotic, anti-oxidant and anti-inflammatory signaling. These mechanisms underlie their tissue protective effects in nervous system disorders. As the tissue protective functions of EPO can be separated from its stimulatory action on hematopoiesis, novel EPO derivatives and mimetics, such as asialo-EPO and carbamoylated EPO have been developed. While the therapeutic potential of the novel EPO derivatives continues to be characterized in preclinical studies, the experimental findings in support for the use of recombinant human (rh)EPO in human brain disease have already been translated to clinical studies in acute ischemic stroke, chronic schizophrenia, and chronic progressive multiple sclerosis. In this review article, we assess the studies on EPO and, in particular, on its structural or functional variants in experimental models of nervous system disorders, and we provide a short overview of the completed and ongoing clinical studies testing EPO as neuroprotective/neuroregenerative treatment option in neuropsychiatric disease.
SCZ Keywordsschizophrenia, schizophrenic
3Proc. Natl. Acad. Sci. U.S.A. 2012 Jun 109: 9617-22
PMID22645329
TitleErythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke.
AbstractErythropoietin (EPO) is a neuroprotective cytokine in models of ischemic and nervous system injury, where it reduces neuronal apoptosis and inflammatory cytokines and increases neurogenesis and angiogenesis. EPO also improves cognition in healthy volunteers and schizophrenic patients. We studied the effect of EPO administration on the gene-expression profile in the ischemic cortex of rats after cerebral ischemia at early time points (2 and 6 h). EPO treatment up-regulated genes already increased by ischemia. Hierarchical clustering and analysis of overrepresented functional categories identified genes implicated in synaptic plasticity-Arc, BDNF, Egr1, and Egr2, of which Egr2 was the most significantly regulated. Up-regulation of Arc, BDNF, Dusp5, Egr1, Egr2, Egr4, and Nr4a3 was confirmed by quantitative PCR. We investigated the up-regulation of Egr2/Krox20 further because of its role in neuronal plasticity. Its elevation by EPO was confirmed in an independent in vivo experiment of cerebral ischemia in rats. Using the rat neuroblastoma B104, we found that wild-type cells that do not express EPO receptor (EPOR) do not respond to EPO by inducing Egr2. However, EPOR-expressing B104 cells induce Egr2 early upon incubation with EPO, indicating that Egr2 induction is a direct effect of EPO and that EPOR mediates this effect. Because these changes occur in vivo before decreased inflammatory cytokines or neuronal apoptosis is evident, these findings provide a molecular mechanism for the neuroreparative effects of cytokines and suggest a mechanism of neuroprotection by which promotion of a plastic phenotype results in decreased inflammation and neuronal death.
SCZ Keywordsschizophrenia, schizophrenic
4PLoS ONE 2012 -1 7: e38128
PMID22675514
TitleA new mouse model for mania shares genetic correlates with human bipolar disorder.
AbstractBipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN) that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: EPOR, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
SCZ Keywordsschizophrenia, schizophrenic
5Mol. Med. 2012 -1 18: 1029-40
PMID22669473
TitleCommon variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia.
AbstractErythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsic role of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations of EPO and EPO receptor (EPOR) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short-term memory readouts, with one particular combination of genotypes superior to all others (p < 0.0001). In an independent healthy control sample (N > 800), these associations were confirmed. A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenic expression of constitutively active EPOR in pyramidal neurons of cortex and hippocampus. We thus predicted that the human genotypes associated with better cognition would reflect gain-of-function effects. Indeed, rEPORter gene assays and quantitative transcriptional analysis of peripheral blood mononuclear cells showed genotype-dependent EPO/EPOR expression differences. Together, these findings reveal a role of endogenous EPO/EPOR for cognition, at least in schizophrenic patients.
SCZ Keywordsschizophrenia, schizophrenic
6Mol. Med. 2012 -1 18: 1029-40
PMID22669473
TitleCommon variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia.
AbstractErythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsic role of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations of EPO and EPO receptor (EPOR) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short-term memory readouts, with one particular combination of genotypes superior to all others (p < 0.0001). In an independent healthy control sample (N > 800), these associations were confirmed. A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenic expression of constitutively active EPOR in pyramidal neurons of cortex and hippocampus. We thus predicted that the human genotypes associated with better cognition would reflect gain-of-function effects. Indeed, rEPORter gene assays and quantitative transcriptional analysis of peripheral blood mononuclear cells showed genotype-dependent EPO/EPOR expression differences. Together, these findings reveal a role of endogenous EPO/EPOR for cognition, at least in schizophrenic patients.
SCZ Keywordsschizophrenia, schizophrenic