1Med. Hypotheses 2004 -1 62: 542-5
PMID15050103
TitleIntrathecal therapy with trastuzumab may be beneficial in cases of refractory schizophrenia.
AbstractRefractory schizophrenia has limited therapeutic options. schizophrenia can be considered to be a disease of abnormal synaptic plasticity. Neuregulin is a member of the epithelial growth factor family, which induces growth and differentiation of epithelial, glial and muscle cells in culture. Neuregulin has been documented to be important in synaptic plasticity. The important role of neuregulin in synaptic plasticity as well as its developmental role have increasingly been documented recently. The actions of neuregulin are mediated through ERB receptors. Neuregulin can bind directly to erbB3 and erbB4 receptors and receptor heterodimerization allows neuregulin dependent activation of ERBB2. The role of Erb 2 could make it possible to use the monoclonal antibody against it for improving the synaptic plasticity through the action on neuregulin. The use of trastuzumab (Her2 antibody) as targeted therapy is well documented in metastatic carcinoma of breast. Also intra-thecal administration of trastuzumab has been reported to be safe in carcinomatous meningitis. Here it is being hypothesized that intra-thecal administration of trastuzumab would improve synaptic plasticity there by making refractory schizophrenia amenable to treatment.
SCZ Keywordsschizophrenia, schizophrenics
2PLoS ONE 2007 -1 2: e1369
PMID18159252
TitleNeuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: potential implications for schizophrenia and cancer.
AbstractNeuregulin-1 (NRG1) is a putative schizophrenia susceptibility gene involved extensively in central nervous system development as well as cancer invasion and metastasis. Using a B lymphoblast cell model, we previously demonstrated impairment in NRG1alpha-mediated migration in cells derived from patients with schizophrenia as well as effects of risk alleles in NRG1 and catechol-O-methyltransferase (COMT), a second gene implicated both in schizophrenia susceptibility and in cancer.
Here, we examine cell adhesion, an essential component process of cell motility, using an integrin-mediated cell adhesion assay based on an interaction between ICAM-1 and the CD11a/CD18 integrin heterodimer expressed on lymphoblasts. In our assay, NRG1alpha induces lymphoblasts to assume varying levels of adhesion characterized by time-dependent fluctuations in the firmness of attachment. The maximum range of variation in adhesion over sixty minutes correlates strongly with NRG1alpha-induced migration (r(2) = 0.61). NRG1alpha-induced adhesion variation is blocked by ERBB2, PI3K, and Akt inhibitors, but not by PLC, ROCK, MLCK, or MEK inhibitors, implicating the ERBB2/PI3K/Akt1 signaling pathway in NRG1-stimulated, integrin-mediated cell adhesion. In cell lines from 20 patients with schizophrenia and 20 normal controls, cells from patients show a significant deficiency in the range of NRG1alpha-induced adhesion (p = 0.0002). In contrast, the response of patient-derived cells to phorbol myristate acetate is unimpaired. The COMT Val108/158Met genotype demonstrates a strong trend towards predicting the range of the NRG1alpha-induced adhesion response with risk homozygotes having decreased variation in cell adhesion even in normal subjects (p = 0.063).
Our findings suggest that a mechanism of the NRG1 genetic association with schizophrenia may involve the molecular biology of cell adhesion.
SCZ Keywordsschizophrenia, schizophrenics
3Schizophr. Res. 2007 Feb 90: 15-27
PMID17223013
TitleExpression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia.
AbstractSeveral recent studies have found changes in the expression of genes functionally related to myelination and oligodendrocyte homeostasis in schizophrenia. These studies utilized microarrays and quantitative PCR (QPCR), methodologies which do not permit direct, unamplified examination of mRNA expression. In addition, these studies generally only examined transcript expression in homogenates of gray matter. In the present study, we examined the expression of myelination-related genes previously implicated in schizophrenia by microarray or QPCR. Using in situ hybridization, we measured transcript expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin-associated glycoprotein (MAG), transferrin (TF), quaking (QKI), gelsolin, myelin oligodendrocyte glycoprotein, v-erb-b2 erythroblastic leukemia viral oncogene homolog 3, ERBB2 interacting protein, motility-related protein-1, SRY-box containing gene 10, oligodendrocyte transcription factor 2, peripheral myelin protein 22, and claudin-11 in both gray and white matter of the anterior cingulate cortex (ACC) in subjects with schizophrenia (n=41) and a comparison group (n=34). We found decreased expression of MAG, QKI, TF, and CNP transcripts in white matter. We did not find any differences in expression of these transcripts between medicated (n=31) and unmedicated (n=10) schizophrenics, suggesting that these changes are not secondary to treatment with antipsychotics. Finally, we found significant positive correlations between QKI and MAG or CNP mRNA expression, suggesting that the transcription factor QKI regulates MAG and CNP expression. Our results support the hypothesis that myelination and oligodendrocyte function are impaired in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenics
4Schizophr. Res. 2007 Feb 90: 15-27
PMID17223013
TitleExpression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia.
AbstractSeveral recent studies have found changes in the expression of genes functionally related to myelination and oligodendrocyte homeostasis in schizophrenia. These studies utilized microarrays and quantitative PCR (QPCR), methodologies which do not permit direct, unamplified examination of mRNA expression. In addition, these studies generally only examined transcript expression in homogenates of gray matter. In the present study, we examined the expression of myelination-related genes previously implicated in schizophrenia by microarray or QPCR. Using in situ hybridization, we measured transcript expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin-associated glycoprotein (MAG), transferrin (TF), quaking (QKI), gelsolin, myelin oligodendrocyte glycoprotein, v-erb-b2 erythroblastic leukemia viral oncogene homolog 3, ERBB2 interacting protein, motility-related protein-1, SRY-box containing gene 10, oligodendrocyte transcription factor 2, peripheral myelin protein 22, and claudin-11 in both gray and white matter of the anterior cingulate cortex (ACC) in subjects with schizophrenia (n=41) and a comparison group (n=34). We found decreased expression of MAG, QKI, TF, and CNP transcripts in white matter. We did not find any differences in expression of these transcripts between medicated (n=31) and unmedicated (n=10) schizophrenics, suggesting that these changes are not secondary to treatment with antipsychotics. Finally, we found significant positive correlations between QKI and MAG or CNP mRNA expression, suggesting that the transcription factor QKI regulates MAG and CNP expression. Our results support the hypothesis that myelination and oligodendrocyte function are impaired in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenics
5Adv Anat Embryol Cell Biol 2007 -1 190: 1-65
PMID17432114
TitleThe neuregulin-I/ErbB signaling system in development and disease.
AbstractNeuregulins (NRGs) comprise a large family of EGF-like signaling molecules involved in cell-cell communication during development and disease. The neuregulin family of ligands has four members: NRG1, NRG2, NRG3, and NRG4. Relatively little is known about the biological functions of the NRG2, 3, and 4 proteins. In contrast, the NRG1 proteins have been demonstrated to play important roles during the development of the nervous system, heart, and mammary glands. For example, NRG1 has essential functions in the development of neural crest cells and some of their major derivatives, like Schwann cells and sympathetic neurons. NRG1 controls the trabeculation of the myocardial musculature and the ductal differentiation of the mammary epithelium. Moreover, there is emerging evidence for the involvement of NRG signals in the development and function of several other organ systems, and in human disease, including breast cancer and schizophrenia. Many different isoforms of the Neuregulin-1 gene are synthesized. Such isoforms differ in their tissue-specific expression patterns and their biological activities, thereby contributing to the great diversity of the in vivo functions of NRG1. Neuregulins transmit their signals to target cells by interacting with transmembrane tyrosine kinase receptors of the ErbB family. This family includes four members, the epidermal growth factor receptor (EGF-R, ErbB1, ERBB2, ErbB3, and ErbB4). Receptor-ligand interaction induces the heterodimerization of receptor monomers, which in turn results in the activation of intracellular signaling cascades and the induction of cellular responses including proliferation, migration, differentiation, and survival or apoptosis. In vivo, functional NRG1 receptors are heterodimers composed of ERBB2 with either an ErbB3, or ErbB4 molecule. The tissue-specific distribution of the different receptor types further contributes to the diversity and specificity of the biological functions of this signaling pathway. It is a typical feature of the Neuregulin-1/ErbB signaling pathway to control sequential steps during the development of a particular organ system. For example, this pathway functions in early precursor proliferation, maturation, as well as in the myelination of Schwann cells. The systematic analysis of genetic models that have been established by the help of conventional as well as conditional gene targeting strategies in mice was instrumental for the uncovering of the multitude of biological functions of this signaling system. In this review the basic biology of the Neuregulin-1/ErbB system and how it relates to the in vivo functions were discussed with special emphasis to transgenic techniques in mice.
SCZ Keywordsschizophrenia, schizophrenics
6Behav Brain Funct 2007 -1 3: 31
PMID17598910
TitleInteractions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia.
AbstractEvidence of genetic association between the NRG1 (Neuregulin-1) gene and schizophrenia is now well-documented. Furthermore, several recent reports suggest association between schizophrenia and single-nucleotide polymorphisms (SNPs) in ERBB4, one of the receptors for Neuregulin-1. In this study, we have extended the previously published associations by investigating the involvement of all eight genes from the ERBB and NRG families for association with schizophrenia.
Eight genes from the ERBB and NRG families were tested for association to schizophrenia using a collection of 396 cases and 1,342 blood bank controls ascertained from Aberdeen, UK. A total of 365 SNPs were tested. Association testing of both alleles and genotypes was carried out using the fast Fisher's Exact Test (FET). To understand better the nature of the associations, all pairs of SNPs separated by >or= 0.5 cM with at least nominal evidence of association (P < 0.10) were tested for evidence of pairwise interaction by logistic regression analysis.
42 out of 365 tested SNPs in the eight genes from the ERBB and NRG gene families were significantly associated with schizophrenia (P < 0.05). Associated SNPs were located in ERBB4 and NRG1, confirming earlier reports. However, novel associations were also seen in NRG2, NRG3 and EGFR. In pairwise interaction tests, clear evidence of gene-gene interaction was detected for NRG1-NRG2, NRG1-NRG3 and EGFR-NRG2, and suggestive evidence was also seen for ERBB4-NRG1, ERBB4-NRG2, ERBB4-NRG3 and ERBB4-ERBB2. Evidence of intragenic interaction was seen for SNPs in ERBB4.
These new findings suggest that observed associations between NRG1 and schizophrenia may be mediated through functional interaction not just with ERBB4, but with other members of the NRG and ERBB families. There is evidence that genetic interaction among these loci may increase susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenics
7Brain Res. 2007 Mar 1139: 95-109
PMID17280647
TitleWidespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain.
AbstractNeuregulin (NRG) signaling proteins interact with ErbB receptors leading to the proliferation, differentiation and migration of neurons and glia in the developing brain. NRG-1/ErbB4 are susceptibility genes for schizophrenia, yet little is known about the neuroanatomical expression of ErbB receptors specifically in primates. We find widespread expression of ERBB2, ErbB3 and ErbB4 receptor mRNAs throughout the telencephalon of juvenile and adult monkeys with in situ hybridization, with ERBB2 and ErbB4 mRNA more abundant than ErbB3 mRNA. ERBB2 and ErbB4 mRNA are expressed at higher levels in grey matter compared to white matter, whereas ErbB3 mRNA is expressed at low levels in both grey and white matter. We also characterized ErbB protein expression with immunoblotting and immunohistochemistry. In frontal cortex, ERBB2, ErbB3 and ErbB4 antibodies immunostained neuronal soma and nuclei. The ERBB2 antibody also immunostained glia at the pial surface. Within white matter, ErbB3 and ErbB4 proteins were localized to putative interstitial white matter neurons while ERBB2 protein was found in glia. Western blotting revealed immunopositive bands at approximately 180-200 kDa for each ErbB, which is consistent with the size of full-length ErbBs. Smaller immunopositive bands were also identified for each ErbB receptor in whole brain homogenates and separate cytoplasmic and nuclear extracts suggesting nuclear ErbB-back-signaling capacity in the brain. The ubiquitous expression of ErbB receptors indicates that many cell populations throughout the brain of juvenile and adult primates have the potential to respond to NRG-1 in a variety of ways.
SCZ Keywordsschizophrenia, schizophrenics
8J Neural Transm (Vienna) 2008 -1 115: 521-30
PMID18301953
TitleThe anthraquinone derivative Emodin ameliorates neurobehavioral deficits of a rodent model for schizophrenia.
AbstractAbnormality in cytokine signaling is implicated in the neuropathology of schizophrenia. Previously, we established an animal model for schizophrenia by administering epidermal growth factor (EGF) to neonatal rats. Here we investigated effects of the anthraquinone derivatives emodin (3-methyl-1,6,8-trihydroxyanthraquinone) and sennoside (bis-[D: -glucopyranosyl-oxy]-tetrahydro-4,4'-dihydroxy-dioxo[bianthracene]-2,2'-dicarboxylic acid) on behaviors of this model and EGF signaling. Subchronic oral administration of emodin (50 mg/kg) suppressed acoustic startle responses and abolished prepulse inhibition (PPI) deficits in this rodent model. ANCOVA revealed that emodin had distinct effects on PPI and startle responses. In contrast, sennoside (50 mg/kg) had no effects. Emodin attenuated weight gain initially during treatment but had no apparent effect on weight gain and locomotor activity thereafter. Application of emodin to neocortical cultures attenuated the phosphorylation of ErbB1 and ERBB2. We conclude that emodin can both attenuate EGF receptor signaling and ameliorate behavioral deficits. Therefore, emodin might be a novel class of a pro-drug for anti-psychotic medication.
SCZ Keywordsschizophrenia, schizophrenics
9Int. J. Neuropsychopharmacol. 2008 Jun 11: 553-61
PMID18184445
TitleChronic antipsychotic drug administration alters the expression of neuregulin 1beta, ErbB2, ErbB3, and ErbB4 in the rat prefrontal cortex and hippocampus.
AbstractNeuregulin 1 (NRG1) has been identified as a susceptibility gene for schizophrenia, and dysregulation of NRG1 and its ErbB receptors is implicated in the pathophysiology of the disorder. The present study examined the protein expression levels of NRG1beta, ERBB2, ErbB3 and ErbB4 in the rat prefrontal cortex and hippocampus following a 4-wk administration of haloperidol (1 mg/kg i.p.), clozapine (10 mg/kg i.p.), or risperidone (1 mg/kg i.p.) by using immunohistochemistry and Western blot. The results showed that haloperidol promoted the expression of NRG1beta and ErbB4, whereas clozapine inhibited NRG1beta expression in the rat prefrontal cortex. Both haloperidol and clozapine significantly increased the protein levels of NRG1beta and ErbB receptors in the rat hippocampus. Repeated administration of risperidone only increased the expression of NRG1beta and ErbB4 in the hippocampus. Our findings demonstrate that antipsychotic drugs differentially regulate the expression of NRG1 and ErbB receptors in the rat brain, which may provide insight into the molecular basis of the pharmacological profile of antipsychotic drugs.
SCZ Keywordsschizophrenia, schizophrenics
10Mol. Psychiatry 2008 Feb 13: 162-72
PMID17579610
TitleMolecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene.
AbstractNeuregulin and the neuregulin receptor ERBB4 have been genetically and functionally implicated in schizophrenia. In this study, we used the yeast two-hybrid system to identify proteins that interact with ERBB4, to identify genes and pathways that might contribute to schizophrenia susceptibility. We identified the MAGI scaffolding proteins as ERBB4-binding proteins. After validating the interaction of MAGI proteins with ERBB4 in mammalian cells, we demonstrated that ERBB4 expression, alone or in combination with ERBB2 or ERBB3, led to the tyrosine phosphorylation of MAGI proteins, and that this could be further enhanced with receptor activation by neuregulin. As MAGI proteins were previously shown to interact with receptor phosphotyrosine phosphatase beta/zeta (RPTPbeta), we postulated that simultaneous binding of MAGI proteins to RPTPbeta and ERBB4 forms a phosphotyrosine kinase/phosphotyrosine phosphatase complex. Studies in cultured cells confirmed both a spatial and functional association between ERBB4, MAGI and RPTPbeta. Given the evidence for this functional association, we examined the genes coding for MAGI and RPTPbeta for genetic association with schizophrenia in a Caucasian United Kingdom case-control cohort (n= approximately 1400). PTPRZ1, which codes for RPTPbeta, showed significant, gene-wide and hypothesis-wide association with schizophrenia in our study (best individual single-nucleotide polymorphism allelic P=0.0003; gene-wide P=0.0064; hypothesis-wide P=0.026). The data provide evidence for a role of PTPRZ1, and for RPTPbeta signaling abnormalities, in the etiology of schizophrenia. Furthermore, the data indicate a role for RPTPbeta in the modulation of ERBB4 signaling that may in turn provide further support for an important role of neuregulin/ERBB4 signaling in the molecular basis of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenics
11Neuroscience 2009 Jun 161: 95-110
PMID19298847
TitleIn situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons.
AbstractAlthough epidermal growth factor (EGF) and neuregulin-1 are neurotrophic factors for mesencephalic dopaminergic neurons and implicated in schizophrenia, the cellular localization and developmental regulation of their receptors (ErbB1-4) remain to be characterized. Here we investigated the distributions of mRNA for ErbB1-4 in the midbrain of the developing mouse with in situ hybridization and immunohistochemistry. The expression of ErbB1 and ERBB2 mRNAs was relatively high at the perinatal stage and frequently colocalized with mRNA for S100beta and Olig2, markers for immature astrocytes or oligodendrocyte precursors. Modest signal for ErbB1 mRNA was also detected in a subset of dopaminergic neurons. ErbB3 mRNA was detectable at postnatal day 10, peaked at postnatal day 18, and colocalized with 2',3'-cyclic nucleotide 3'-phosphodiesterase, a marker for oligodendrocytes. In contrast, ErbB4 mRNA was exclusively localized in neurons throughout development. Almost all of ErbB4 mRNA-expressing cells (94%-96%) were positive for tyrosine hydroxylase in the substantia nigra pars compacta but 66%-78% in the ventral tegmental area and substantia nigra pars lateralis. Conversely, 92%-99% of tyrosine hydroxylase-positive cells expressed ErbB4 mRNA. The robust and restricted expression of ErbB4 mRNA in the midbrain dopaminergic neurons suggests that ErbB4 ligands, neuregulin-1 and other EGF-related molecules, contribute to development or maintenance of this neuronal population.
SCZ Keywordsschizophrenia, schizophrenics
12Proc. Natl. Acad. Sci. U.S.A. 2009 Mar 106: 4507-12
PMID19240213
TitleImpaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system.
AbstractNeuregulin-1 (NRG1) and its ERBB2/B4 receptors are encoded by candidate susceptibility genes for schizophrenia, yet the essential functions of NRG1 signaling in the CNS are still unclear. Using CRE/LOX technology, we have inactivated ERBB2/B4-mediated NRG1 signaling specifically in the CNS. In contrast to expectations, cell layers in the cerebral cortex, hippocampus, and cerebellum develop normally in the mutant mice. Instead, loss of ERBB2/B4 impairs dendritic spine maturation and perturbs interactions of postsynaptic scaffold proteins with glutamate receptors. Conversely, increased NRG1 levels promote spine maturation. ERBB2/B4-deficient mice show increased aggression and reduced prepulse inhibition. Treatment with the antipsychotic drug clozapine reverses the behavioral and spine defects. We conclude that ERBB2/B4-mediated NRG1 signaling modulates dendritic spine maturation, and that defects at glutamatergic synapses likely contribute to the behavioral abnormalities in ERBB2/B4-deficient mice.
SCZ Keywordsschizophrenia, schizophrenics
13J. Pharmacol. Sci. 2010 -1 114: 320-31
PMID20962455
TitleAntipsychotic potential of quinazoline ErbB1 inhibitors in a schizophrenia model established with neonatal hippocampal lesioning.
AbstractHyper-signaling of the epidermal growth factor receptor family (ErbB) is implicated in the pathophysiology of schizophrenia. Various quinazoline inhibitors targeting ErbB1 or ERBB2 - 4 have been developed as anti-cancer agents and might be useful for antipsychotic treatment. In the present study, we used an animal model of schizophrenia established by neonatal hippocampal lesioning and evaluated the neurobehavioral consequences of ErbB1-inhibitor treatment. Subchronic administration of the ErbB1 inhibitor ZD1839 to the cerebroventricle of rats receiving neonatal hippocampal lesioning ameliorated deficits in prepulse inhibition as well as those in the latent inhibition of tone-dependent fear learning. There were no apparent adverse effects on basal learning scores or locomotor activity, however. The administration of other ErbB1 inhibitors, PD153035 and OSI-774, similarly attenuated the prepulse inhibition impairment of this animal model. In parallel, there were decreases in ErbB1 phosphorylation in animals treated with ErbB1 inhibitors. These results indicate an antipsychotic potential of quinazoline ErbB1 inhibitors. ErbB receptor tyrosine kinases may be novel therapeutic targets for schizophrenia or its related psychotic symptoms.
SCZ Keywordsschizophrenia, schizophrenics
14Proc. Natl. Acad. Sci. U.S.A. 2010 Mar 107: 5622-7
PMID20212127
TitleDisrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade.
AbstractNeuregulin-1 (NRG1) and Disrupted-in-schizophrenia-1 (DISC1) are promising susceptibility factors for schizophrenia. Both are multifunctional proteins with roles in a variety of neurodevelopmental processes, including progenitor cell proliferation, migration, and differentiation. Here, we provide evidence linking these factors together in a single pathway, which is mediated by ErbB receptors and PI3K/Akt. We show that signaling by NRG1 and NRG2, but not NRG3, increase expression of an isoform of DISC1 in vitro. Receptors ERBB2 and ErbB3, but not ErbB4, are responsible for transducing this effect, and PI3K/Akt signaling is also required. In NRG1 knockout mice, this DISC1 isoform is selectively reduced during neurodevelopment. Furthermore, a similar decrease in DISC1 expression is seen in beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) knockout mice, in which NRG1/Akt signaling is reportedly impaired. In contrast to neuronal DISC1 that was reported and characterized, expression of DISC1 in other types of cells in the brain has not been addressed. Here we demonstrate that DISC1, like NRG and ErbB proteins, is expressed in neurons, astrocytes, oligodendrocytes, microglia, and radial progenitors. These findings may connect NRG1, ErbBs, Akt, and DISC1 in a common pathway, which may regulate neurodevelopment and contribute to susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenics
15Curr Alzheimer Res 2012 Feb 9: 178-83
PMID22455478
TitleBACE1 dependent neuregulin processing: review.
AbstractNeuregulin-1 (NRG1), known also as heregulin, acetylcholine receptor inducing activity (ARIA), glial growth factor (GGF), or sensory and motor neuron derived factor (SMDF), plays essential roles in several developmental processes, and is required also later in life. Many variants of NRG1 are produced via alternative splicing and usage of distinct promoters. All contain an epidermal growth factor (EGF)-like domain, which alone is sufficient to bind and activate the cognate receptors, members of the ErbB family. NRG1 mediated signaling is crucial for cardiogenesis and the development of the mammary gland and ERBB2 (HER2), an orphan co-receptor for NRG1 is the target of the drug Herceptin? (trastuzumab) used for treatment of metastatic breast cancer. In the nervous system, NRG1 controls the early development of subpopulations of neural crest cells. In particular, NRG1 acts as an essential paracrine signaling molecule expressed on the axonal surface, where it signals to Schwann cells throughout development and regulates the thickness of the myelin sheath. NRG1 is required also by other cell types in the nervous system, for instance as an axonal signal released by proprioceptive afferents to induce development of the muscle spindle, and it controls aspects of cortical interneuron development as well as the formation of thalamocortical projections. Work from several laboratories implicates dysregulation of NRG1/ErbB4 signaling in the etiology of schizophrenia. Biochemical studies have shown that the precursor proteins of NRG1 can be released from the membrane through limited proteolysis. In addition, most NRG1 isoforms contain a transmembrane domain, which is processed by ?-secretase after shedding. Thereby the intracellular domain is released into the cytoplasm. Despite this, the importance of NRG1 cleavage for its functions in vivo remained unclear until recently. ?- Secretase (?-site amyloid precursor protein cleaving enzyme 1, BACE1) was first identified through its function as the rate limiting enzyme of amyloid-?-peptide (A?) production. A? is the major component of amyloid plaques in Alzheimer's disease (AD). More recently it was shown that Neuregulin-1 is a major physiological substrate of BACE1 during early postnatal development. Mutant mice lacking BACE1 display severe hypomyelination of peripheral nerves similar to that seen in mice lacking NRG1/ErbB signaling in Schwann cells, and a BACE1-dependent activation of NRG1 in the process of peripheral myelination was proposed. Here we summarize the current knowledge about the role of NRG1 proteolysis for ErbB receptor mediated signaling during development and in Alzheimer's disease.
SCZ Keywordsschizophrenia, schizophrenics
16J Toxicol Sci 2016 -1 41: 303-9
PMID26961615
TitleEffects of prolonged antipsychotic administration on neuregulin-1/ErbB signaling in rat prefrontal cortex and myocardium: implications for the therapeutic action and cardiac adverse effect.
AbstractPatients with schizophrenia (SCZ) are at higher risk for developing cardiovascular disease (CVD) and neuregulin-1 (NRG1)/ErbB signaling has been identified as a common susceptibility pathway for the comorbidity. Antipsychotic treatment can change NRG1/ErbB signaling in the brain, which has been implicated in their therapeutic actions, whereas the drug-induced alterations of NRG1/ErbB pathway in cardiovascular system might be associated with the prominent cardiac side-effects of antipsychotic medication. To test this hypothesis, we examined NRG1/ErbB system in rat prefrontal cortex (PFC) and myocardium following 4-week intraperitoneal administration of haloperidol, risperidone or clozapine. Generally, the antipsychotics significantly enhanced NRG1/ErbB signaling with increased expression of NRG1 and phosphorylation of ErbB4 and ERBB2 in the brain and myocardium, except that clozapine partly blocked the cardiac NRG1/ERBB2 activation, which could be associated with its more severe cardiac adverse actions. Combined, our data firstly showed evidence of the effect of antipsychotic exposure on myocardial NRG1/ErbB signaling, along with the activated NRG1/ErbB system in brain, providing a potential link between the therapeutic actions and cardiotoxicity.
SCZ Keywordsschizophrenia, schizophrenics