1J Affect Disord 2013 Oct 151: 291-7
PMID23820096
TitleNo evidence for association between bipolar disorder risk gene variants and brain structural phenotypes.
AbstractWhile recent genome-wide association studies have identified several new bipolar disorder (BD) risk variants, structural imaging studies have reported enlarged ventricles and volumetric reductions among the most consistent findings. We investigated whether these genetic risk variants could explain some of the structural brain abnormalities in BD.
In a sample of 517 individuals (N=121 BD cases, 116 SZ cases, 61 other psychosis cases and 219 healthy controls), we tested the potential association between nine SNPs in the genes CACNA1C, ANK3, ODZ4 and SYNE1 and eight brain structural measures found to be altered in BD, and if these were specifically affecting the BD sample. We also assessed the polygenic effect of all these 9 SNPs on the brain phenotypes.
Our most significant result was an association between the risk allele A in CACNA1C SNP rs4775913 and decreased cerebellar volume (pnom.=0.0075) in the total sample, which did not remain significant after multiple testing correction (pthreshold<0.0064). There was no evidence for diagnostic specificity for this association in the BD group. Further, no polygenic effect of these 9 SNPs was observed.
Low statistical power might increase our type II error rate.
The present findings indicate that these risk SNPs do not explain a large proportion of the structural brain alterations in BD. Thus, these genes which are all related to neuronal functions must be involved in other pathophysiological aspects of BD development.
SCZ Keywordsschizophrenia, schizophrenic
2Ann. Hum. Genet. 2013 Nov 77: 504-12
PMID23909765
TitleRole of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs.
AbstractA balanced translocation affecting DISC1 cosegregates with several psychiatric disorders, including schizophrenia, in a Scottish family. DISC1 is a hub protein of a network of protein-protein interactions involved in multiple developmental pathways within the brain. Gene set-based analysis has been proposed as an alternative to individual analysis of single nucleotide polymorphisms (SNPs) to get information from genome-wide association studies. In this work, we tested for an overrepresentation of the DISC1 interacting proteins within the top results of our ranked list of genes based on our previous genome-wide association study of missense SNPs in schizophrenia. Our data set consisted of 5100 common missense SNPs genotyped in 476 schizophrenic patients and 447 control subjects from Galicia, NW Spain. We used a modification of the Gene Set Enrichment Analysis adapted for SNPs, as implemented in the GenGen software. The analysis detected an overrepresentation of the DISC1 interacting proteins (permuted P-value=0.0158), indicative of the role of this gene set in schizophrenia risk. We identified seven leading-edge genes, MACF1, UTRN, DST, DISC1, KIF3A, SYNE1, and AKAP9, responsible for the overrepresentation. These genes are involved in neuronal cytoskeleton organization and intracellular transport through the microtubule cytoskeleton, suggesting that these processes may be impaired in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Ann. Hum. Genet. 2013 Nov 77: 504-12
PMID23909765
TitleRole of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs.
AbstractA balanced translocation affecting DISC1 cosegregates with several psychiatric disorders, including schizophrenia, in a Scottish family. DISC1 is a hub protein of a network of protein-protein interactions involved in multiple developmental pathways within the brain. Gene set-based analysis has been proposed as an alternative to individual analysis of single nucleotide polymorphisms (SNPs) to get information from genome-wide association studies. In this work, we tested for an overrepresentation of the DISC1 interacting proteins within the top results of our ranked list of genes based on our previous genome-wide association study of missense SNPs in schizophrenia. Our data set consisted of 5100 common missense SNPs genotyped in 476 schizophrenic patients and 447 control subjects from Galicia, NW Spain. We used a modification of the Gene Set Enrichment Analysis adapted for SNPs, as implemented in the GenGen software. The analysis detected an overrepresentation of the DISC1 interacting proteins (permuted P-value=0.0158), indicative of the role of this gene set in schizophrenia risk. We identified seven leading-edge genes, MACF1, UTRN, DST, DISC1, KIF3A, SYNE1, and AKAP9, responsible for the overrepresentation. These genes are involved in neuronal cytoskeleton organization and intracellular transport through the microtubule cytoskeleton, suggesting that these processes may be impaired in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
4BMC Med. Genet. 2014 -1 15: 2
PMID24387768
TitleGenome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1.
AbstractRecently, genome-wide association studies (GWAS) for cases versus controls using single nucleotide polymorphism microarray data have shown promising findings for complex neuropsychiatric disorders, including bipolar disorder (BD).
Here we describe a comprehensive genome-wide study of bipolar disorder (BD), cross-referencing analysis from a family-based study of 229 small families with association analysis from over 950 cases and 950 ethnicity-matched controls from the UK and Canada. Further, loci identified in these analyses were supported by pathways identified through pathway analysis on the samples.
Although no genome-wide significant markers were identified, the combined GWAS findings have pointed to several genes of interest that support GWAS findings for BD from other groups or consortia, such as at SYNE1 on 6q25, PPP2R2C on 4p16.1, ZNF659 on 3p24.3, CNTNAP5 (2q14.3), and CDH13 (16q23.3). This apparent corroboration across multiple sites gives much confidence to the likelihood of genetic involvement in BD at these loci. In particular, our two-stage strategy found association in both our combined case/control analysis and the family-based analysis on 1q21.2 (closest gene: sphingosine-1-phosphate receptor 1 gene, S1PR1) and on 1q24.1 near the gene TMCO1, and at CSMD1 on 8p23.2, supporting several previous GWAS reports for BD and for schizophrenia. Pathway analysis suggests association of pathways involved in calcium signalling, neuropathic pain signalling, CREB signalling in neurons, glutamate receptor signalling and axonal guidance signalling.
The findings presented here show support for a number of genes previously implicated genes in the etiology of BD, including CSMD1 and SYNE1, as well as evidence for previously unreported genes such as the brain-expressed genes ADCY2, NCALD, WDR60, SCN7A and SPAG16.
SCZ Keywordsschizophrenia, schizophrenic
5Commun Integr Biol 2014 -1 7: e28740
PMID25053985
TitleThe role of F-actin in modulating Clathrin-mediated endocytosis: Lessons from neurons in health and neuropsychiatric disorder.
AbstractClathrin-mediated endocytosis is one of several mechanisms for retrieving transmembrane proteins from the cell surface. This key mechanism is highly conserved in evolution and is found in any eukaryotic cell from yeast to mammals. Studies from several model organisms have revealed that filamentous actin (F-actin) plays multiple distinct roles in shaping Clathrin-mediated endocytosis. Yet, despite the identification of numerous molecules at the interface between endocytic machinery and the cytoskeleton, our mechanistic understanding of how F-actin regulates endocytosis remains limited. Key insights come from neurons where vesicular release and internalization are critical to pre- and postsynaptic function. Recent evidence from human genetics puts postsynaptic organization, glutamate receptor trafficking, and F-actin remodeling in the spotlight as candidate mechanisms underlying neuropsychiatric disorders. Here I review recent findings that connect the F-actin cytoskeleton mechanistically to Clathrin-mediated endocytosis in the central nervous system, and discuss their potential involvement in conferring risk for neuropsychiatric disorder.
SCZ Keywordsschizophrenia, schizophrenic
6Front Neurosci 2014 -1 8: 331
PMID25414627
TitleNeuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders.
AbstractMajor neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders-attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10(-5)). 22% of genes overlapped two or more disorders. The most widely shared subset of genes-common to five of six disorders-included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20-30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.
SCZ Keywordsschizophrenia, schizophrenic
7Curr Psychiatry Rep 2014 Nov 16: 493
PMID25194313
TitleNew developments in the genetics of bipolar disorder.
AbstractThe last several years have been breakthrough ones in bipolar disorder (BPD) genetics, as the field has identified robust risk variants for the first time. Leading the way have been genome-wide association studies (GWAS) that have assessed common genetic markers across very large groups of patients and controls. These have resulted in findings in genes including ANK3, CACNA1C, SYNE1, ODZ4, and TRANK1. Additional studies have begun to examine the biology of these genes and how risk variants influence aspects of brain and behavior that underlie BPD. For example, carriers of the CACNA1C risk variant have been found to exhibit hippocampal and anterior cingulate dysfunction during episodic memory recall. This work has shed additional light on the relationship of bipolar susceptibility variants to other disorders, particularly schizophrenia. Even larger BPD GWAS are expected with samples now amassed of 21,035 cases and 28,758 controls. Studies have examined the pharmacogenomics of BPD with studies of lithium response, yielding high profile results that remain to be confirmed. The next frontier in the field is the identification of rare bipolar susceptibility variants through large-scale DNA sequencing. While only a couple of papers have been published to date, many studies are underway. The Bipolar Sequencing Consortium has been formed to bring together all of the groups working in this area, and to perform meta-analyses of the data generated. The consortium, with 13 member groups, now has exome data on ~3,500 cases and ~5,000 controls, and on ~162 families. The focus will likely shift within several years from exome data to whole genome data as costs of obtaining such data continue to drop. Gene-mapping studies are now providing clear results that provide insights into the pathophysiology of the disorder. Sequencing studies should extend this process further. Findings could eventually set the stage for rational therapeutic development.
SCZ Keywordsschizophrenia, schizophrenic
8Mol. Cell. Neurosci. 2016 Mar 71: 46-55
PMID26704904
TitleGenomic mapping and cellular expression of human CPG2 transcripts in the SYNE1 gene.
AbstractBipolar disorder (BD) is a prevalent and severe mood disorder characterized by recurrent episodes of mania and depression. Both genetic and environmental factors have been implicated in BD etiology, but the biological underpinnings remain elusive. Recent genome-wide association studies (GWAS) for identifying genes conferring risk for schizophrenia, BD, and major depression, identified an association between single-nucleotide polymorphisms (SNPs) in the SYNE1 gene and increased risk of BD. SYNE1 has also been identified as a risk locus for multiple other neurological or neuromuscular genetic disorders. The BD associated SNPs map within the gene region homologous to part of rat SYNE1 encompassing the brain specific transcripts encoding CPG2, a postsynaptic neuronal protein localized to excitatory synapses and an important regulator of glutamate receptor internalization. Here, we use RNA-seq, ChIP-seq and RACE to map the human SYNE1 transcriptome, focusing on the CPG2 locus. We validate several CPG2 transcripts, including ones not previously annotated in public databases, and identify and clone a full-length CPG2 cDNA expressed in human neocortex, hippocampus and striatum. Using lenti-viral gene knock down/replacement and surface receptor internalization assays, we demonstrate that human CPG2 protein localizes to dendritic spines in rat hippocampal neurons and is functionally equivalent to rat CPG2 in regulating glutamate receptor internalization. This study provides a valuable gene-mapping framework for relating multiple genetic disease loci in SYNE1 with their transcripts, and for evaluating the effects of missense SNPs identified by patient genome sequencing on neuronal function.
SCZ Keywordsschizophrenia, schizophrenic