1J. Neurosci. 2007 Jan 27: 4-14
PMID17202467
TitleDISC1 regulates neurotrophin-induced axon elongation via interaction with Grb2.
AbstractDisrupted-in-schizophrenia-1 (DISC1) is a candidate gene for susceptibility of schizophrenia. In the accompanying paper (Taya et al., 2006), we report that DISC1 acts as a linker between Kinesin-1 and DISC1-interacting molecules, such as NudE-like, lissencephaly-1, and 14-3-3epsilon. Here we identified growth factor receptor bound protein 2 (GRB2) as a novel DISC1-interacting molecule. GRB2 acts as an adaptor molecule that links receptor tyrosine kinases and the Ras-extracellular signal-regulated kinase (ERK) pathway. DISC1 formed a ternary complex with GRB2 and kinesin heavy chain KIF5A of Kinesin-1. In cultured rat hippocampal neurons, both DISC1 and GRB2 partially colocalized at the distal part of axons. Knockdown of DISC1 or kinesin light chains of Kinesin-1 by RNA interference inhibited the accumulation of GRB2 from the distal part of axons. Knockdown of DISC1 also inhibited the neurotrophin-3 (NT-3)-induced phosphorylation of ERK-1/2 at the distal part of axons and inhibited NT-3-induced axon elongation. These results suggest that DISC1 is required for NT-3-induced axon elongation and ERK activation at the distal part of axons by recruiting GRB2 to axonal tips.
SCZ Keywordsschizophrenia
2Hum. Mol. Genet. 2008 Oct 17: 3212-22
PMID18658164
TitleIdentification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia.
Abstractschizophrenia is a complex mental disorder with a fairly high degree of heritability. Although the causes of schizophrenia remain unclear, it is now widely accepted that it is a neurodevelopmental and neurodegenerative disorder involving disconnectivity and disorder of the synapses. Disrupted-in-schizophrenia 1 (DISC1) is a promising candidate susceptibility gene involved in neurodevelopment, including maturation of the cerebral cortex. To identify other susceptibility genes for schizophrenia, we screened for DISC1-interacting molecules [NudE-like (NUDEL), Lissencephaly-1 (LIS1), 14-3-3epsilon (YWHAE), growth factor receptor bound protein 2 (GRB2) and Kinesin family 5A of Kinesen1 (KIF5A)], assessing a total of 25 tagging single-nucleotide polymorphisms (SNPs) in a Japanese population. We identified a YWHAE SNP (rs28365859) that showed a highly significant difference between case and control samples, with higher minor allele frequencies in controls (P(allele) = 1.01 x 10(-5) and P(genotype) = 4.08 x 10(-5) in 1429 cases and 1728 controls). Both messenger RNA transcription and protein expression of 14-3-3epsilon were also increased in the lymphocytes of healthy control subjects harboring heterozygous and homozygous minor alleles compared with homozygous major allele subjects. To further investigate a potential role for YWHAE in schizophrenia, we studied Ywhae(+/-) mice in which the level of 14-3-3epsilon protein is reduced to 50% of that in wild-type littermates. These mice displayed weak defects in working memory in the eight-arm radial maze and moderately enhanced anxiety-like behavior in the elevated plus-maze. Our results suggest that YWHAE is a possible susceptibility gene that functions protectively in schizophrenia.
SCZ Keywordsschizophrenia
3PLoS ONE 2011 -1 6: e23450
PMID21853134
TitleSequencing of DISC1 pathway genes reveals increased burden of rare missense variants in schizophrenia patients from a northern Swedish population.
AbstractIn recent years, DISC1 has emerged as one of the most credible and best supported candidate genes for schizophrenia and related neuropsychiatric disorders. Furthermore, increasing evidence--both genetic and functional--indicates that many of its protein interaction partners are also involved in the development of these diseases. In this study, we applied a pooled sample 454 sequencing strategy, to explore the contribution of genetic variation in DISC1 and 10 of its interaction partners (ATF5, GRB2, FEZ1, LIS-1, PDE4B, NDE1, NDEL1, TRAF3IP1, YWHAE, and ZNF365) to schizophrenia susceptibility in an isolated northern Swedish population. Mutation burden analysis of the identified variants in a population of 486 SZ patients and 514 control individuals, revealed that non-synonymous rare variants with a MAF<0.01 were significantly more present in patients compared to controls (8.64% versus 4.7%, P?=?0.018), providing further evidence for the involvement of DISC1 and some of its interaction partners in psychiatric disorders. This increased burden of rare missense variants was even more striking in a subgroup of early onset patients (12.9% versus 4.7%, P?=?0.0004), highlighting the importance of studying subgroups of patients and identifying endophenotypes. Upon investigation of the potential functional effects associated with the identified missense variants, we found that ?90% of these variants reside in intrinsically disordered protein regions. The observed increase in mutation burden in patients provides further support for the role of the DISC1 pathway in schizophrenia. Furthermore, this study presents the first evidence supporting the involvement of mutations within intrinsically disordered protein regions in the pathogenesis of psychiatric disorders. As many important biological functions depend directly on the disordered state, alteration of this disorder in key pathways may represent an intriguing new disease mechanism for schizophrenia and related neuropsychiatric diseases. Further research into this unexplored domain will be required to elucidate the role of the identified variants in schizophrenia etiology.
SCZ Keywordsschizophrenia
4Schizophr. Res. 2011 Feb 125: 201-8
PMID21195589
TitleApplication of systems biology approach identifies and validates GRB2 as a risk gene for schizophrenia in the Irish Case Control Study of Schizophrenia (ICCSS) sample.
AbstractRecently, we prioritized 160 schizophrenia candidate genes (SZGenes) by integrating multiple lines of evidence and subsequently identified twenty-four pathways in which these 160 genes are overrepresented. Among them, four neurotransmitter-related pathways were top ranked. In this study, we extended our previous pathway analysis by applying a systems biology approach to identifying candidate genes for schizophrenia. We constructed protein-protein interaction subnetworks for four neurotransmitter-related pathways and merged them to obtain a general neurotransmitter network, from which five candidate genes stood out. We tested the association of four genes (GRB2, HSPA5, YWHAG, and YWHAZ) in the Irish Case-Control Study of schizophrenia (ICCSS) sample (1021 cases and 626 controls). Interestingly, six of the seven tested SNPs in GRB2 showed significant signal, two of which (rs7207618 and rs9912608) remained significant after permutation test or Bonferroni correction, suggesting that GRB2 might be a risk gene for schizophrenia in Irish population. To our knowledge, this is the first report of GRB2 being significantly associated with schizophrenia in a specific population. Our results suggest that the systems biology approach is promising for identification of candidate genes and understanding the etiology of complex diseases.
SCZ Keywordsschizophrenia