1Schizophr. Res. 2002 Nov 58: 11-20
PMID12363385
TitleMicroarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study.
AbstractMicroarray studies can be used to examine expression levels for large numbers of genes simultaneously and may be applied to identify genes involved in schizophrenia. A microarray with 1127 brain-relevant genes was used to screen relative gene expression in the dorsolateral prefrontal cortex (DLPFC) from three pools of patients with schizophrenia (n = 15) and three matched control pools (n = 15). Pooling of tissue samples was employed as a strategy to detect changes in gene expression that are consistently found across individual cases of schizophrenia. Differences in gene expression were examined by z-ratios in addition to traditional normalized ratios. Three genes that showed consistently decreased expression in schizophrenia by both z-ratio differences and decreased normalized numerical ratios were identified. These were histidine triad nucleotide-binding protein (HINT), ubiquitin conjugating enzyme E2N (UBE2N) and glutamate receptor, ionotropic, AMPA 2 (GRIA2). Moreover, HINT gene expression was decreased to a similar degree in a prior study. In addition, a decrease in AMPA receptor expression is consistent with a decrease in glutamate synaptic function. These results are subject to limitations based on variations inherent to human subjects and tissue samples, possible effects of neuroleptic treatment, and the requirement for verification using independent techniques.
SCZ Keywordsschizophrenia, schizophrenic
2Ann. N. Y. Acad. Sci. 2003 Nov 1003: 22-35
PMID14684433
TitleGenomics and variation of ionotropic glutamate receptors.
AbstractSequencing of the human, mouse, and rat genomes has enabled a comprehensive informatics approach to gene families. This approach is informative for identification of new members of gene families, for cross-species sequence conservation related to functional conservation, for within-species diversity related to functional variation, and for historical effects of selection. This genome informatics approach also focuses our attention on genes whose genomic locations coincide with linkages to phenotypes. We are identifying ionotropic glutamate receptor (IGR) sequence variation by resequencing technologies, including denaturing high-performance liquid chromoatography (dHPLC), for screening and direct sequencing, and by information mining of public (e.g., dbSNP and ENSEMBL) and private (i.e., Celera Discovery System) sequence databases. Each of the 16 known IGRs is represented in these databases, their positions on a canonical physical map (for example, the Celera map) are established, and comparison to mouse and rat sequences has been performed, revealing substantial conservation of these genes, which are located on different chromosomes but found within syntenic groups of genes. A collection of 38 missense variants were identified by the informatics and resequencing approaches in several of these receptor genes, including GRIN2B, GRIN3B, GRIA2, GRIA3, and GRIK1. This represents only a fraction of the sequence variation across these genes, but, in fact, these may constitute a large fraction of the common polymorphisms at these genes, and these polymorphisms are a starting point for understanding the role of these receptors in neurogenetic variation. Genetically influenced human neurobehavioral phenotypes that are likely to be linked to IGR genetic variants include addictions, anxiety/dysphoria disorders, post-brain injury behavioral disorders, schizophrenia, epilepsy, pain perception, learning, and cognition. Thus, the effects of glutamate receptor variation may be protean, and the task of relating variation to behavior difficult. However, functional variants of (1) catechol-O-methyltransferase, (2) serotonin transporter, and (3) brain-derived neurotrophic factor have recently been linked both to behavioral differences and to intermediate phenotypes, suggesting a pathway by which functional variation at IGRs can be tied to an etiologically complex phenotype.
SCZ Keywordsschizophrenia, schizophrenic
3Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007 Mar 144B: 129-58
PMID17266109
TitleTowards understanding the schizophrenia code: an expanded convergent functional genomics approach.
AbstractIdentifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
SCZ Keywordsschizophrenia, schizophrenic
4Schizophr. Res. 2007 Feb 90: 28-40
PMID17141476
TitleAMPA receptor subunit and splice variant expression in the DLPFC of schizophrenic subjects and rhesus monkeys chronically administered antipsychotic drugs.
AbstractDisturbances in glutamate neurotransmission are thought to be one of the major contributing factors to the pathophysiology of schizophrenia. In the dorsolateral prefrontal cortex (DLPFC), glutamate neurotransmission is largely mediated by AMPA receptors. Data regarding alterations of subunit expression in the brains of patients with schizophrenia remain equivocal. This may be due to differences in technique sensitivity, endogenous control selection for normalization of data, or effect of antipsychotic drug treatment in different cohorts of schizophrenia. This study attempted to address these issues by examining the expression of AMPA receptor subunits and splice variants in the DLPFC of two schizophrenia cohorts using quantitative PCR (qPCR) with normalization to the geometric mean of multiple endogenous controls. In addition, a non-human primate model of chronic antipsychotic drug administration was used to determine the extent to which the transcript expression may be altered by antipsychotic drug treatment in the primate DLPFC. AMPA receptor subunits and flip and/or flop splice variants were not significantly different in the DLPFC of schizophrenia subjects versus controls in either of the two cohorts. However, in rhesus monkeys chronically treated with antipsychotic drugs, clozapine treatment significantly decreased GRIA1 and increased GRIA3 mRNA expression, while both clozapine and haloperidol increased the expression of GRIA2 subunit mRNA. Expression of AMPA receptor splice variants was not significantly altered by antipsychotic drug administration. This is the first study to show that AMPA receptor subunit mRNAs in the primate DLPFC are altered by antipsychotic drug administration. Antipsychotic drug-induced alterations may help explain differences in human post-mortem studies regarding AMPA receptor subunit expression and provide some insight into the mechanism of action of antipsychotic drugs.
SCZ Keywordsschizophrenia, schizophrenic
5Schizophr. Res. 2007 Feb 90: 28-40
PMID17141476
TitleAMPA receptor subunit and splice variant expression in the DLPFC of schizophrenic subjects and rhesus monkeys chronically administered antipsychotic drugs.
AbstractDisturbances in glutamate neurotransmission are thought to be one of the major contributing factors to the pathophysiology of schizophrenia. In the dorsolateral prefrontal cortex (DLPFC), glutamate neurotransmission is largely mediated by AMPA receptors. Data regarding alterations of subunit expression in the brains of patients with schizophrenia remain equivocal. This may be due to differences in technique sensitivity, endogenous control selection for normalization of data, or effect of antipsychotic drug treatment in different cohorts of schizophrenia. This study attempted to address these issues by examining the expression of AMPA receptor subunits and splice variants in the DLPFC of two schizophrenia cohorts using quantitative PCR (qPCR) with normalization to the geometric mean of multiple endogenous controls. In addition, a non-human primate model of chronic antipsychotic drug administration was used to determine the extent to which the transcript expression may be altered by antipsychotic drug treatment in the primate DLPFC. AMPA receptor subunits and flip and/or flop splice variants were not significantly different in the DLPFC of schizophrenia subjects versus controls in either of the two cohorts. However, in rhesus monkeys chronically treated with antipsychotic drugs, clozapine treatment significantly decreased GRIA1 and increased GRIA3 mRNA expression, while both clozapine and haloperidol increased the expression of GRIA2 subunit mRNA. Expression of AMPA receptor splice variants was not significantly altered by antipsychotic drug administration. This is the first study to show that AMPA receptor subunit mRNAs in the primate DLPFC are altered by antipsychotic drug administration. Antipsychotic drug-induced alterations may help explain differences in human post-mortem studies regarding AMPA receptor subunit expression and provide some insight into the mechanism of action of antipsychotic drugs.
SCZ Keywordsschizophrenia, schizophrenic
6Hum. Mol. Genet. 2008 Apr 17: 1156-68
PMID18184693
TitleDysregulation of miRNA 181b in the temporal cortex in schizophrenia.
AbstractAnalysis of global microRNA (miRNA) expression in postmortem cortical grey matter from the superior temporal gyrus, revealed significant up-regulation of miR-181b expression in schizophrenia. This finding was supported by quantitative real-time RT-PCR analysis of miRNA expression in a cohort of 21 matched pairs of schizophrenia and non-psychiatric controls. The implications of this finding are substantial, as this miRNA is predicted to regulate many target genes with potential significance to the development of schizophrenia. They include the calcium sensor gene visinin-like 1 (VSNL1) and the ionotropic AMPA glutamate receptor subunit (GRIA2), which were found to be down-regulated in the same cortical tissue from the schizophrenia group. Both of these genes were also suppressed in miR-181b transfected cells and shown to contain functional miR-181b miRNA recognition elements by reporter gene assay. This study suggests altered miRNA levels could be a significant factor in the dysregulation of cortical gene expression in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
7Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008 Sep 147B: 745-53
PMID18163426
TitleStudy on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients.
AbstractImpairment of glutamatergic neurotransmission is one of the major hypotheses proposed to explain the neurobiology of schizophrenia. Therefore, the genes involved in the glutamate neurotransmitter system could be considered potential candidate genes for schizophrenia susceptibility. A systematic study on alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor genes has been carried out and the results obtained from the analysis on GRIA2, GRIA3 and GRIA4 are reported. No evidence of association with schizophrenia was found for the GRIA2 and GRIA4 genes; strong evidence of association with schizophrenia was found for GRIA3. This X-linked gene showed a different behavior in the two genders; a positive association with schizophrenia was observed among females but not in males. Female carriers of rs1034428 A allele were found to have a 2.19-fold higher risk of developing schizophrenia compared to non-carriers and 3.28-fold higher risk for developing a non-paranoid phenotype. The analysis at the haplotype level showed that susceptibility to schizophrenia was associated with the specific haplotype rs989638-rs1034428-rs2227098 CAC (P = 0.0008). We conclude that, of the three AMPA genes analyzed here, only GRIA3 seems to be involved in the pathogenesis of schizophrenia, but only in females.
SCZ Keywordsschizophrenia, schizophrenic
8J. Neurochem. 2010 May 113: 601-14
PMID20096092
TitleTemporal dysregulation of cortical gene expression in the isolation reared Wistar rat.
AbstractThe critical sequence of molecular, neurotransmission and synaptic disruptions that underpin the emergence of psychiatric disorders like schizophrenia remain to be established with progress only likely using animal models that capture key features of such disorders. We have related the emergence of behavioural, neurochemical and synapse ultrastructure deficits to transcriptional dysregulation in the medial prefrontal cortex of Wistar rats reared in isolation. Isolation reared animals developed sensorimotor deficits at postnatal day 60 which persisted into adulthood. Analysis of gene expression prior to the emergence of the sensorimotor deficits revealed a significant disruption in transcriptional control, notably of immediate early and interferon-associated genes. At postnatal day 60 many gene transcripts relating particularly to GABA transmission and synapse structure, for example Gabra4, Nsf, Syn2 and Dlgh1, transiently increased expression. A subsequent decrease in genes such as GRIA2 and Dlgh2 at postnatal day 80 suggested deficits in glutamatergic transmission and synapse integrity, respectively. Microdialysis studies revealed decreased extracellular glutamate suggesting a state of hypofrontality while ultrastructural analysis showed total and perforated synapse complement in layer III to be significantly reduced in the prefrontal cortex of postnatal day 80 isolated animals. These studies provide a molecular framework to understand the developmental emergence of the structural and behavioural characteristics that may in part define psychiatric illness.
SCZ Keywordsschizophrenia, schizophrenic
9Neurosci. Lett. 2012 Jan 506: 170-4
PMID22094384
TitleInfluence of GRIA1, GRIA2 and GRIA4 polymorphisms on diagnosis and response to antipsychotic treatment in patients with schizophrenia.
AbstractThe present study is aimed at exploring whether some single nucleotide polymorphisms (SNPs) within GRIA1, GRIA2 and GRIA4 could be associated with schizophrenia and whether they could predict clinical outcomes in Korean in-patients treated with antipsychotics. One hundred forty five patients with MD, 221 in-patients with schizophrenia and 170 psychiatrically healthy controls were genotyped for 17 SNPs within GRIA1, GRIA2 and GRIA4. Baseline and final clinical measures, including the Positive and Negative Symptoms Scale (PANSS), were recorded. No significant association was found with the diagnosis of schizophrenia. We observed an association between rs3813296 genotype and improvement on PANSS negative scores. Our findings provide no evidence for an association between SNPs within GRIA1, GRIA2 and GRIA4 under investigation and schizophrenia susceptibility, although rs3813296 (GRIA2) could be associated with improvement on PANSS negative scores. However, taking into account the several limitations of our study, further research is needed to draw more definitive conclusions.
SCZ Keywordsschizophrenia, schizophrenic
10Epigenomics 2012 Dec 4: 605-21
PMID23244307
TitleMBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case--control samples.
AbstractWe studied the use of methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) as a cost-effective screening tool for methylome-wide association studies (MWAS).
Because MBD-seq has not yet been applied on a large scale, we first developed and tested a pipeline for data processing using 1500 schizophrenia cases and controls plus 75 technical replicates with an average of 68 million reads per sample. This involved the use of technical replicates to optimize quality control for multi- and duplicate-reads, an in silico experiment to identify CpGs in loci with alignment problems, CpG coverage calculations based on multiparametric estimates of the fragment size distribution, a two-stage adaptive algorithm to combine data from correlated adjacent CpG sites, principal component analyses to control for confounders and new software tailored to handle the large data set.
We replicated MWAS findings in independent samples using a different technology that provided single base resolution. In an MWAS of age-related methylation changes, one of our top findings was a previously reported robust association involving GRIA2. Our results also suggested that owing to the many confounding effects, a considerable challenge in MWAS is to identify those effects that are informative about disease processes.
This study showed the potential of MBD-seq as a cost-effective tool in large-scale disease studies.
SCZ Keywordsschizophrenia, schizophrenic
11Clin Ter 2013 -1 164: e319-24
PMID24045531
Title[Genetics and epigenetics of schizophrenia].
Abstractschizophrenia is a severe psychiatric disorder with an estimate prevalence of 0.3-0.7%. Studies on family aggregation showed a higher incidence of disease among family members of affected people. This observation lead to formulate the hypothesis that schizophrenia could be inheritable, but twin studies have shown a concordance of disease between monozygotic twins only of 50%, indicating the concomitant role of environmental factors in the pathogenesis of schizophrenia. Researches in molecular biology field have allowed the identification of genes that confer susceptibility to schizophrenia on chromosomes 1, 2, 3, 5, 6, 8, 10, 11, 13, 14, 20 and 22. Epigenetic modifications of gene expression, that not involve the primary DNA sequence, may also predispose to schizophrenia, in particular the methylation of genes involved in neurotransmission (RELN, GAD1, MARLIN-1, and NR3B GRIA2, VGLUT1 and 2, 5HT2a, COMT and BDNF), the histone modifications and the action of non-coding RNAs. This review deals with the results of a bibliographic retrieval on PubMed, carried out, using the key words: schizophrenia, genetics, epigenetics. From the epitomized results it can be derived that schizophrenia seems to be a multifactorial disease. Environmental factors, that can cause epigenetic modifications, are important in its pathogenesis, acting on a biological inheritable vulnerability.
SCZ Keywordsschizophrenia, schizophrenic