1CNS Neurol Disord Drug Targets 2006 Apr 5: 197-204
PMID16611092
TitleGastrin-releasing peptide receptor as a molecular target for psychiatric and neurological disorders.
AbstractThe mammalian bombesin (BB)-like peptide gastrin-releasing peptide (GRP) stimulates cell proliferation, displays a range of neuroendocrine activities, and acts as a growth factor in the pathogenesis of several types of human cancer. Several lines of evidence have indicated that GRP and its receptor (GRPR) might also be involved in the neurochemical alterations associated with psychiatric and neurological disorders. GRP and GRPR are distributed throughout the mammalian central nervous system (CNS). Altered levels of BB-like peptides have been found in the CNS of patients with schizophrenia and Parkinson's disease. Dysfunctions in GRPR-induced cellular calcium signaling have been reported in fibroblasts from patients with Alzheimer's disease. A translocation in the GRPR gene has been associated with autism. Pharmacological and genetic studies in rodents have shown that GRPRs in brain areas such as the dorsal hippocampus and amygdala are importantly involved in regulating synaptic plasticity and aspects of behavior that might be altered in disorders such as anxiety, schizophrenia, depression, autism and dementia. Behaviors modulated by the GRPR in rodents include grooming, food intake, stereotypy, social behavior, and emotionally-motivated learning and memory. Together, these findings support the view that the GRPR should be considered a therapeutic target for a subset of CNS diseases.
SCZ Keywordsschizophrenia
2Stem Cells 2014 Sep 32: 2454-66
PMID24806094
TitleGastrin-releasing peptide contributes to the regulation of adult hippocampal neurogenesis and neuronal development.
AbstractIn the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2?-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2?-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.
SCZ Keywordsschizophrenia