1Development 2010 Sep 137: 3089-97
PMID20702565
TitleAn SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain.
AbstractDlx homeobox genes play a crucial role in the migration and differentiation of the subpallial precursor cells that give rise to various subtypes of gamma-aminobutyric acid (GABA)-expressing neurons of the forebrain, including local-circuit cortical interneurons. Aberrant development of GABAergic interneurons has been linked to several neurodevelopmental disorders, including epilepsy, schizophrenia, Rett syndrome and autism. Here, we report in mice that a single-nucleotide polymorphism (SNP) found in an autistic proband falls within a functional protein binding site in an ultraconserved cis-regulatory element. This element, I56i, is involved in regulating Dlx5/Dlx6 homeobox gene expression in the developing forebrain. We show that the SNP results in reduced I56i activity, predominantly in the medial and caudal ganglionic eminences and in streams of neurons tangentially migrating to the cortex. Reduced activity is also observed in GABAergic interneurons of the adult somatosensory cortex. The SNP affects the affinity of Dlx proteins for their binding site in vitro and reduces the transcriptional activation of the enhancer by Dlx proteins. Affinity purification using I56i sequences led to the identification of a novel regulator of Dlx gene expression, general transcription factor 2 I (GTF2I), which is among the genes most often deleted in Williams-Beuren syndrome, a neurodevelopmental disorder. This study illustrates the clear functional consequences of a single nucleotide variation in an ultraconserved non-coding sequence in the context of developmental abnormalities associated with disease.
SCZ Keywordsschizophrenia
2BMC Neurosci 2014 -1 15: 127
PMID25429715
TitleCognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population.
AbstractIndividuals with Williams syndrome, a neurogenetic condition caused by deletion of a set of genes at chromosomal location 7q11.23, exhibit a remarkable suite of traits including hypersociality with high, nonselective friendliness and low social anxiety, expressive language relatively well-developed but under-developed social-communication skills overall, and reduced visual-spatial abilities. Deletions and duplications of the Williams-syndrome region have also been associated with autism, and with schizophrenia, two disorders centrally involving social cognition. Several lines of evidence have linked the gene GTF2I (General Transcription Factor IIi) with the social phenotypes of Williams syndrome, but a role for this gene in sociality within healthy populations has yet to be investigated.
We genotyped a large set of healthy individuals for two single-nucleotide polymorphisms in the GTF2I gene that have recently been significantly associated with autism, and thus apparently exhibit functional effects on autism-related social phenotypes. GTF2I genotypes for these SNPs showed highly significant association with low social anxiety combined with reduced social-communication abilities, which represents a metric of the Williams-syndrome cognitive profile as described from previous studies.
These findings implicate the GTF2I gene in the neurogenetic basis of social communication and social anxiety, both in Williams syndrome and among individuals in healthy populations.
SCZ Keywordsschizophrenia