1BMC Res Notes 2012 -1 5: 146
PMID22420779
TitleThe application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia.
AbstractEstablishing preclinical models is essential for novel drug discovery in schizophrenia. Most existing models are characterized by abnormalities in behavioral readouts, which are informative, but do not necessarily translate to the symptoms of the human disease. Therefore, there is a necessity of characterizing the preclinical models from a molecular point of view. Selective reaction monitoring (SRM) has already shown promise in preclinical and clinical studies for multiplex measurement of diagnostic, prognostic and treatment-related biomarkers.
We have established an SRM assay for multiplex analysis of 7 enzymes of the glycolysis pathway which is already known to be affected in human schizophrenia and in the widely-used acute PCP rat model of schizophrenia. The selected enzymes were hexokinase 1 (HK1), aldolase C (Aldoc), triosephosphate isomerase (Tpi1), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), phosphoglycerate mutase 1 (Pgam1), phosphoglycerate kinase 1 (Pgk1) and enolase 2 (Eno2). The levels of these enzymes were analyzed using SRM in frontal cortex from brain tissue of PCP treated rats.
Univariate analyses showed statistically significant altered levels of Tpi1 and alteration of HK1, Aldoc, Pgam1 and Gapdh with borderline significance in PCP rats compared to controls. Most interestingly, multivariate analysis which considered the levels of all 7 enzymes simultaneously resulted in generation of a bi-dimensional chart that can distinguish the PCP rats from the controls.
This study not only supports PCP treated rats as a useful preclinical model of schizophrenia, but it also establishes that SRM mass spectrometry could be used in the development of multiplex classification tools for complex psychiatric disorders such as schizophrenia.
SCZ Keywordsschizophrenia
2J Psychiatr Res 2012 Jan 46: 95-104
PMID22018957
TitleMitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling.
AbstractThe pathophysiology of mood and psychotic disorders, including unipolar depression (UPD), bipolar disorder (BPD) and schizophrenia (SCHZ), is largely unknown. Numerous studies, from molecular to neuroimaging, indicate that some individuals with these disorders have impaired brain energy metabolism evidenced by abnormal glucose metabolism and mitochondrial dysfunction. However, underlying mechanisms are unclear. A critical feature of brain energy metabolism is attachment to the outer mitochondrial membrane (OMM) of hexokinase 1 (HK1), an initial and rate-limiting enzyme of glycolysis. HK1 attachment to the OMM greatly enhances HK1 enzyme activity and couples cytosolic glycolysis to mitochondrial oxidative phosphorylation, through which the cell produces most of its adenosine triphosphate (ATP). HK1 mitochondrial attachment is also important to the survival of neurons and other cells through prevention of apoptosis and oxidative damage. Here we show, for the first time, a decrease in HK1 attachment to the OMM in postmortem parietal cortex brain tissue of individuals with UPD, BPD and SCHZ compared to tissue from controls without psychiatric illness. Furthermore, we show that HK1 mitochondrial detachment is associated with increased activity of the polyol pathway, an alternative, anaerobic pathway of glucose metabolism. These findings were observed in samples from both medicated and medication-free individuals. We propose that HK1 mitochondrial detachment could be linked to these disorders through impaired energy metabolism, increased vulnerability to oxidative stress, and impaired brain growth and development.
SCZ Keywordsschizophrenia
3Schizophr. Res. 2014 Apr 154: 1-13
PMID24560881
TitleAbnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia.
AbstractExcitatory amino acid transporter 2 (EAAT2) belongs to a family of Na(+) dependent glutamate transporters that maintain a low synaptic concentration of glutamate by removing glutamate from the synaptic cleft into astroglia and neurons. EAAT2 activity depends on Na(+) and K(+) gradients generated by Na(+)/K(+) ATPase and ATP. Hexokinase 1 (HK1), an initial enzyme of glycolysis, binds to mitochondrial outer membrane where it couples cytosolic glycolysis to mitochondrial oxidative phosphorylation, producing ATP utilized by the EAAT2/Na(+)/K(+) ATPase protein complex to facilitate glutamate reuptake. In this study, we hypothesized that the protein complex formed by EAAT2, Na(+)/K(+) ATPase and mitochondrial proteins in human postmortem prefrontal cortex may be disrupted, leading to abnormal glutamate transmission in schizophrenia. We first determined that EAAT2, Na(+)/K(+) ATPase, HK1 and aconitase were found in both EAAT2 and Na(+)/K(+) ATPase interactomes by immunoisolation and mass spectrometry in human postmortem prefrontal cortex. Next, we measured levels of glutamate transport complex proteins in subcellular fractions in the dorsolateral prefrontal cortex and found increases in the EAAT2B isoform of EAAT2 in a fraction containing extrasynaptic membranes and increased aconitase 1 in a mitochondrial fraction. Finally, an increased ratio of HK1 protein in the extrasynaptic membrane/mitochondrial fraction was found in subjects with schizophrenia, suggesting that HK1 protein is abnormally partitioned in this illness. Our findings indicate that the integrity of the glutamate transport protein complex may be disrupted, leading to decreased perisynaptic buffering and reuptake of glutamate, as well as impaired energy metabolism in schizophrenia.
SCZ Keywordsschizophrenia
4Front Cell Neurosci 2015 -1 9: 180
PMID26029051
TitleMK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia.
Abstractschizophrenia is a debilitating mental disorder, affecting more than 30 million people worldwide. As a multifactorial disease, the underlying causes of schizophrenia require analysis by multiplex methods such as proteomics to allow identification of whole protein networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia patients have demonstrated changes in activation of glycolytic and energy metabolism pathways. However, it is not known whether these changes occur in neurons or in glial cells. To address this question, we treated neuronal, astrocyte, and oligodendrocyte cell lines with the NMDA receptor antagonist MK-801 and measured the levels of six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic system and has been proposed as a pharmacological means of modeling schizophrenia. Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes in all cell types. Most of the differences were found in oligodendrocytes, which had altered levels of hexokinase 1 (HK1), enolase 2 (ENO2), phosphoglycerate kinase (PGK), and phosphoglycerate mutase 1 after acute MK-801 treatment (8 h), and HK1, ENO2, PGK, and triosephosphate isomerase (TPI) following long term treatment (72 h). Addition of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC) under both acute conditions and HK1 and ALDOC following long term treatment, and TPI was the only enzyme affected under long term conditions in the neuronal cells. In conclusion, MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells and this may be modulated by antipsychotic treatment. Although cell culture studies do not necessarily reflect the in vivo pathophysiology and drug effects within the brain, these results suggest that neurons, astrocytes, and oligodendrocytes are affected differently in schizophrenia. Employing in vitro models using neurotransmitter agonists and antagonists may provide new insights about the pathophysiology of schizophrenia which could lead to a novel system for drug discovery.
SCZ Keywordsschizophrenia