1Am. J. Med. Genet. 2000 Dec 96: 870-2
PMID11121200
TitleHuman leukocyte antigen (HLA) DRB1 alleles in Kuwaiti Arabs with schizophrenia.
AbstractThe frequency of human leukocyte anti- gen DRB1 alleles was determined in a cohort of 194 Kuwaiti Arabs consisting of 80 schizophrenia patients and 114 ethnically matched healthy controls, using a polymerase chain reaction-sequence specific primers method. A total of 12 DRB1 alleles were identified in this Kuwaiti cohort. A statistically significant difference was detected in the frequency of alleles DRB1(*)04 and DRB1(*)13 between the schizophrenia patients and controls. Allele frequency of DRB1(*)04 in schizophrenia patients was 14% compared with nearly 7% in controls (P = 0.028). For DRB1(*)13, the allele frequency was found to be 18% in schizophrenia patients compared with 9% in the controls (P = 0.015). For alleles, DRB1(*)03, DRB1(*)07, and DRB1(*)16 the frequency was higher in controls compared with schizophrenia patients. The frequency of DRB1(*)01, DRB1(*)08, DRB1(*)10, DRB1(*)11, and DRB1(*)15 alleles was almost identical in schizophrenia patients and controls. For the remaining alleles, the differences between the two groups were not statistically significant. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:870-872, 2000.
SCZ Keywordsschizophrenia, schizophrenic
2Am. J. Med. Genet. 2002 Apr 114: 315-20
PMID11920855
TitleInvestigation of linkage and association/linkage disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair- and 89 trio-families with schizophrenia.
AbstractThe hypothesis that HLA antigens confer susceptibility to schizophrenic disorders has been tested by studying linkage and association in a family sample with 69 sib-pair families. Suggestive evidence for linkage was obtained by nonparametric multipoint LOD score analysis with a maximum around DQB CAR (P = 0.0004), a microsatellite marker that is in linkage disequilibrium with the HLA antigen DQB1. Spurious evidence for negative association as calculated by the transmission disequilibrium test was found for HLA- DRB1*11 (chi-square = 11.72, corrected P value = 0.03) and for the haplotype DQB1*301-DQA1*501-DRB1*11 (chi-square = 11.3, corrected P value = 0.043). No evidence of association with these alleles was obtained in a sample of 89 trios with schizophrenic offspring and parents. Our results are not in favor of a direct involvement of the HLA system in development of schizophrenia, but are compatible with the possible existence of a susceptibility gene in the MHC region at chromosome 6p 21.31.
SCZ Keywordsschizophrenia, schizophrenic
3Am. J. Med. Genet. 2002 Apr 114: 315-20
PMID11920855
TitleInvestigation of linkage and association/linkage disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair- and 89 trio-families with schizophrenia.
AbstractThe hypothesis that HLA antigens confer susceptibility to schizophrenic disorders has been tested by studying linkage and association in a family sample with 69 sib-pair families. Suggestive evidence for linkage was obtained by nonparametric multipoint LOD score analysis with a maximum around DQB CAR (P = 0.0004), a microsatellite marker that is in linkage disequilibrium with the HLA antigen DQB1. Spurious evidence for negative association as calculated by the transmission disequilibrium test was found for HLA- DRB1*11 (chi-square = 11.72, corrected P value = 0.03) and for the haplotype DQB1*301-DQA1*501-DRB1*11 (chi-square = 11.3, corrected P value = 0.043). No evidence of association with these alleles was obtained in a sample of 89 trios with schizophrenic offspring and parents. Our results are not in favor of a direct involvement of the HLA system in development of schizophrenia, but are compatible with the possible existence of a susceptibility gene in the MHC region at chromosome 6p 21.31.
SCZ Keywordsschizophrenia, schizophrenic
4Proc. Natl. Acad. Sci. U.S.A. 2005 Oct 102: 15533-8
PMID16223876
TitleComparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia.
AbstractMicroarray techniques hold great promise for identifying risk factors for schizophrenia (SZ) but have not yet generated widely reproducible results due to methodological differences between studies and the high risk of type I inferential errors. Here we established a protocol for conservative analysis and interpretation of gene expression data from the dorsolateral prefrontal cortex of SZ patients using statistical and bioinformatic methods that limit false positives. We also compared brain gene expression profiles with those from peripheral blood cells of a separate sample of SZ patients to identify disease-associated genes that generalize across tissues and populations and further substantiate the use of gene expression profiling of blood for detecting valid SZ biomarkers. Implementing this systematic approach, we: (i) discovered 177 putative SZ risk genes in brain, 28 of which map to linked chromosomal loci; (ii) delineated six biological processes and 12 molecular functions that may be particularly disrupted in the illness; (iii) identified 123 putative SZ biomarkers in blood, 6 of which (BTG1, GSK3A, HLA-DRB1, HNRPA3, SELENBP1, and SFRS1) had corresponding differential expression in brain; (iv) verified the differential expression of the strongest candidate SZ biomarker (SELENBP1) in blood; and (v) demonstrated neuronal and glial expression of SELENBP1 protein in brain. The continued application of this approach in other brain regions and populations should facilitate the discovery of highly reliable and reproducible candidate risk genes and biomarkers for SZ. The identification of valid peripheral biomarkers for SZ may ultimately facilitate early identification, intervention, and prevention efforts as well.
SCZ Keywordsschizophrenia, schizophrenic
5Schizophr Bull 2009 Nov 35: 1163-82
PMID18552348
TitleSchizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.
AbstractMany genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind to influenza, rubella, or poliovirus genes. Certain genes associated with schizophrenia, including those also concerned with neurophysiology, are intimately related to the life cycles of the pathogens implicated in the disease. Several genes may affect pathogen virulence, while the pathogens in turn may affect genes and processes relevant to the neurophysiology of schizophrenia. For such genes, the strength of association in genetic studies is likely to be conditioned by the presence of the pathogen, which varies in different populations at different times, a factor that may explain the heterogeneity that plagues such studies. This scenario also suggests that drugs or vaccines designed to eliminate the pathogens that so clearly interact with schizophrenia susceptibility genes could have a dramatic effect on the incidence of the disease.
SCZ Keywordsschizophrenia, schizophrenic
6Int J Psychiatry Clin Pract 2011 Jun 15: 112-7
PMID22121859
TitleHLA-DRB1 association with schizophrenia in Saudi Arabian patients.
AbstractThis study is aimed to examine the association between HLA-DRB1 alleles frequency and schizophrenia in Saudi Arabs.
The DRB1 region of major histocompatibility complex was screened by polymerase chain reaction/sequence specific primers (PCR/SSP) in 180 schizophrenia patients and 200 matched controls.
The frequency of DRB1*03 was found to be significantly higher in schizophrenia patients as compared to controls, whereas a significantly lower frequency of DRB1*06 was observed in schizophrenia patients as compared to controls. Molecular sub-typing of the most prevalent allele DRB1*03 (30.56%) revealed the presence of DRB1*030101, *030102 alleles.
The results of this study suggested a positive association between DRB1*03 (DRB1*030101, DRB1*030102) with schizophrenia and a negative association of DRB1*06 with schizophrenia in Saudi Arabs. However it is not clear whether the DRB1*03 alleles have a direct causal role in the etiology of schizophrenia or if they are in direct linkage disequilibrium with another true susceptibility locus. Since schizophrenia is a complex phenotype, it is expected that many factors might act together to produce the final outcome. Further studies are warranted involving larger population to confirm the observations reported in this study.
SCZ Keywordsschizophrenia, schizophrenic
7Genes Brain Behav. 2011 Oct 10: 689-701
PMID21649858
TitleComparative immunogenetics of autism and schizophrenia.
AbstractAutism and schizophrenia are highly heritable neurodevelopmental disorders, each mediated by a diverse suite of genetic and environmental risk factors. Comorbidity and familial aggregation of such neurodevelopmental disorders with other disease-related conditions can provide important insights into their etiology. Epidemiological studies have documented reduced rates of rheumatoid arthritis, a systemic autoimmune condition, in schizophrenia, and recent work has shown increased rates of rheumatoid arthritis in first-degree relatives of autistic individuals, especially mothers. Advances in understanding the genetic basis of rheumatoid arthritis have shown that much of the genetic liability to this condition is due to risk and protective alleles at the HLA DRB1 locus. These data allow robust testing of the hypotheses that allelic variation at DRB1 pleiotropically modulates risk of rheumatoid arthritis, autism and schizophrenia. Systematic review of the literature indicates that reported associations of DRB1 variants with these three conditions are congruent with a pleiotropic model: DRB1*04 alleles have been associated with increased risk of rheumatoid arthritis and autism but decreased risk of schizophrenia, and DRB1*13 alleles have been associated with protection from rheumatoid arthritis and autism but higher risk of schizophrenia. These convergent findings from genetics and epidemiology imply that a subset of autism and schizophrenia cases may be underlain by genetically based neuroimmune alterations, and that analyses of the causes of risk and protective effects from DRB1 variants may provide new approaches to therapy.
SCZ Keywordsschizophrenia, schizophrenic
8Biol. Psychiatry 2013 Nov 74: 696-705
PMID23664640
TitlePrefrontal cortical dysfunction after overexpression of histone deacetylase 1.
AbstractPostmortem brain studies have shown that HDAC1-a lysine deacetylase with broad activity against histones and nonhistone proteins-is frequently expressed at increased levels in prefrontal cortex (PFC) of subjects diagnosed with schizophrenia and related disease. However, it remains unclear whether upregulated expression of Hdac1 in the PFC could affect cognition and behavior.
Using adeno-associated virus, an Hdac1 transgene was expressed in young adult mouse PFC, followed by behavioral assays for working and long-term memory, repetitive activity, and response to novelty. Prefrontal cortex transcriptomes were profiled by microarray. Antipsychotic drug effects were explored in mice treated for 21 days with haloperidol or clozapine.
Hdac1 overexpression in PFC neurons and astrocytes resulted in robust impairments in working memory, increased repetitive behaviors, and abnormal locomotor response profiles in novel environments. Long-term memory remained intact. Over 300 transcripts showed subtle but significant changes in Hdac1-overexpressing PFC. Major histocompatibility complex class II (MHC II)-related transcripts, including HLA-DQA1/H2-Aa, HLA-DQB1/H2-Ab1, and HLA-DRB1/H2-Eb1, located in the chromosome 6p21.3-22.1 schizophrenia and bipolar disorder risk locus, were among the subset of genes with a more robust (>1.5-fold) downregulation in expression. Hdac1 levels declined during the course of normal PFC development. Antipsychotic drug treatment, including the atypical clozapine, did not affect Hdac1 levels in PFC but induced expression of multiple MHC II transcripts.
Excessive HDAC1 activity, due to developmental defects or other factors, is associated with behavioral alterations and dysregulated expression of MHC II and other gene transcripts in the PFC.
SCZ Keywordsschizophrenia, schizophrenic
9Schizophr. Res. 2013 Jan 143: 11-7
PMID23177929
TitleNon-random mating, parent-of-origin, and maternal-fetal incompatibility effects in schizophrenia.
AbstractAlthough the association of common genetic variation in the extended MHC region with schizophrenia is the most significant yet discovered, the MHC region is one of the more complex regions of the human genome, with unusually high gene density and long-range linkage disequilibrium. The statistical test on which the MHC association is based is a relatively simple, additive model which uses logistic regression of SNP genotypes to predict case-control status. However, it is plausible that more complex models underlie this association. Using a well-characterized sample of trios, we evaluated more complex models by looking for evidence for: (a) non-random mating for HLA alleles, schizophrenia risk profiles, and ancestry; (b) parent-of-origin effects for HLA alleles; and (c) maternal-fetal genotype incompatibility in the HLA. We found no evidence for non-random mating in the parents of individuals with schizophrenia in terms of MHC genotypes or schizophrenia risk profile scores. However, there was evidence of non-random mating that appeared mostly to be driven by ancestry. We did not detect over-transmission of HLA alleles to affected offspring via the general TDT test (without regard to parent of origin) or preferential transmission via paternal or maternal inheritance. We evaluated the hypothesis that maternal-fetal HLA incompatibility may increase risk for schizophrenia using eight classical HLA loci. The most significant alleles were in HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 but none was significant after accounting for multiple comparisons. We did not find evidence to support more complex models of gene action, but statistical power may have been limiting.
SCZ Keywordsschizophrenia, schizophrenic
10Immunogenetics 2013 Jan 65: 1-7
PMID23053058
TitleSearch for schizophrenia susceptibility variants at the HLA-DRB1 locus among a British population.
Abstractschizophrenia is a complex mental disorder with unknown aetiology. Both candidate gene and genome-wide association (GWA) studies suggest that the human leukocyte antigen (HLA) system may play a part in development of the illness, but the causal HLA variant(s) remain(s) unclear. Previous studies showed that the DRB1*0101 and DRB1*13 alleles might be associated with a high risk of schizophrenia. Therefore, the present study was undertaken to test their association with the disease by genotyping seven DRB1-tagging single nucleotide polymorphisms (SNPs) in a British population. The results showed that, of the previously reported variants that were associated with schizophrenia, the DRB1*1303 allele was the only one marginally associated with a protective effect on the illness in our sample set (?²?=?4.138, P?=?0.042, odds ratio (OR)?=?0.42, 95 % confidence interval (CI) 0.27-0.66). Interestingly, a significant association was found for rs424232 (?²?=?9.404, P?=?0.002, OR?=?0.69, 95 % CI 0.54-0.88), which is a tag SNP for the DRB1*1303 allele and located near to the NOTCH4 gene that is a schizophrenia susceptibility locus confirmed by GWA studies. Analysis with the Haploview program demonstrated that rs424232 was in complete linkage disequilibrium with rs3130297 and rs3131296 present in the NOTCH4 locus. While we have failed to confirm association of the candidate alleles in the DRB1 gene with a high risk of schizophrenia, the present work suggests that the association signal detected in the HLA class II locus may extend a relatively long distance, and more work is needed in order to identify the true causal variants within this region or nearby.
SCZ Keywordsschizophrenia, schizophrenic
11Psychiatry Res 2015 Sep 229: 627-8
PMID26193828
TitleAssociation analysis of the HLA-DRB1*01 and HLA-DRB1*04 with schizophrenia by tag SNP genotyping in the Japanese population.
Abstract-1
SCZ Keywordsschizophrenia, schizophrenic
12PLoS ONE 2015 -1 10: e0144719
PMID26674772
TitleEvidence for Association of Cell Adhesion Molecules Pathway and NLGN1 Polymorphisms with Schizophrenia in Chinese Han Population.
AbstractMultiple risk variants of schizophrenia have been identified by Genome-wide association studies (GWAS). As a complement for GWAS, previous pathway-based analysis has indicated that cell adhesion molecules (CAMs) pathway might be involved in the pathogenesis of schizophrenia. However, less replication studies have been reported. Our objective was to investigate the association between CAMs pathway and schizophrenia in the Chinese Han population. We first performed a pathway analysis utilizing our previous GWAS data. The CAMs pathway (hsa04514) was significantly associated with schizophrenia using hybrid gene set-based test (P = 1.03×10-10) and hypergeometric test (P = 5.04×10-6). Moreover, 12 genes (HLA-A, HLA-C, HLA-DOB, HLA-DPB1, HLA-DQA2, HLA-DRB1, MPZ, CD276, NLGN1, NRCAM, CLDN1 and ICAM3) were modestly significantly associated with schizophrenia (P<0.01). Then, we selected one promising gene neuroligin 1 (NLGN1) to further investigate the association between eight significant SNPs and schizophrenia in an independent sample (1814 schizophrenia cases and 1487 healthy controls). Our study showed that seven SNPs of NLGN1 and two haplotype blocks were significantly associated with schizophrenia. This association was confirmed by the results of combined analysis. Among them, SNP rs9835385 had the most significant association with schizophrenia (P = 2.83×10-7). Furthermore, in silico analysis we demonstrated that NLGN1 is preferentially expressed in human brain and SNP rs1488547 was related to the expression level. We validated the association of CAMs pathway with schizophrenia in pathway-level and identified one susceptibility gene NLGN1. Further investigation of the roles of CAMs pathway in the pathogenesis of schizophrenia is warranted.
SCZ Keywordsschizophrenia, schizophrenic
13Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016 Mar 171: 181-202
PMID26462458
TitleCurrently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.
AbstractA large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives. © 2015 Wiley Periodicals, Inc.
SCZ Keywordsschizophrenia, schizophrenic
14Microarrays (Basel) 2016 Mar 5: -1
PMID26998349
TitleQuantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders.
AbstractGenome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC) in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a larger cohort are needed to determine the significance of this eQTL association with schizophrenia. Our findings support the long-held hypothesis that alterations in immune function are associated with the pathophysiology of psychiatric disorders.
SCZ Keywordsschizophrenia, schizophrenic