1Drug Deliv 2016 -1 23: 346-54
PMID24865295
TitlePaliperidone microemulsion for nose-to-brain targeted drug delivery system: pharmacodynamic and pharmacokinetic evaluation.
AbstractThe objective of present study was to develop and evaluate paliperidone (PALI) loaded microemulsion (PALI-ME) for intranasal delivery in the treatment of schizophrenia.
The PALI-ME was formulated by the spontaneous microemulsification method and characterized for physicochemical parameters. Pharmacodynamic assessments (apomorphine-induced compulsive behavior and spontaneous motor activity) were performed using mice. All formulations were tagged with (99m)Tc (technetium). Pharmacokinetic evaluation of PALI in the brain was investigated using Swiss albino rats. Brain scintigraphy imaging was performed in rabbits.
PALI-ME was found stable with average droplet size of 20.01 ± 1.28 nm. In pharmacodynamic studies, significant (p < 0.05) deference in parameters estimated, were found between the treated and control groups. (99m)Tc-tagged PALI solution (PALI-SOL)/PALI-ME/PALI muco-adhesive ME (PALI-MME) was found to be stable and suitable for in vivo studies. Brain-to-blood ratio at all sampling points up to 8 h following intranasal administration of PALI-MME compared to intravenous PALI-ME was found to be 6-8 times higher signifying greater extent of distribution of the PALI in brain. Rabbit brain scintigraphy demonstrated higher intranasal uptake of the PALI into the brain.
This investigation demonstrates a prompt and larger extent of transport of PALI into the brain through intranasal PALI-MME, which may prove beneficial for treatment of schizophrenia.
SCZ Keywordsschizophrenia
2Eur J Pharm Sci 2016 May -1: -1
PMID27174656
TitleNon-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: Formulation, physicochemical and pharmacokinetic consideration.
AbstractSystemic drug delivery in schizophrenia is a major challenge due to presence of obstacles like, blood-brain barrier and P-glycoprotein, which prohibit entry of drugs into the brain. Quetiapine fumarate (QF), a substrate to P-glycoprotein under goes extensive first pass metabolism leading to limited absorption thus necessitating frequent oral administration. The aim of this study was to develop QF based microemulsion (ME) with and without chitosan (CH) to investigate its potential use in improving the bioavailability and brain targeting efficiency following non-invasive intranasal administration. QF loaded ME and mucoadhesive ME (MME) showed globule size, pH and viscosity in the range of 29-47nm, 5.5-6.5 and 17-40cP respectively. CH-ME with spherical globules having mean size of 35.31±1.71nm, pH value of 5.61±0.16 showed highest ex-vivo nasal diffusion (78.26±3.29%) in 8h with no sign of structural damage upon histopathological examination. Circular plume with an ovality ratio closer to 1.3 for CH-ME depicted ideal spray pattern. Significantly higher brain/blood ratio of CH-ME in comparison to QF-ME and drug solution following intranasal administration revealed prolonged retention of QF at site of action suggesting superiority of CH as permeability enhancer. Following intranasal administration, 2.7 and 3.8 folds higher nasal bioavailability in brain with CH-ME compared to QF-ME and drug solution respectively is indicative of preferential nose to brain transport (80.51±6.46%) bypassing blood-brain barrier. Overall, the above finding shows promising results in the area of developing non-invasive intranasal route as an alternative to oral route for brain delivery.
SCZ Keywordsschizophrenia